IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i2p693-700.html
   My bibliography  Save this article

Portfolio selection under possibilistic mean-variance utility and a SMO algorithm

Author

Listed:
  • Zhang, Wei-Guo
  • Zhang, Xi-Li
  • Xiao, Wei-Lin

Abstract

In this paper, we propose a new portfolio selection model with the maximum utility based on the interval-valued possibilistic mean and possibilistic variance, which is a two-parameter quadratic programming problem. We also present a sequential minimal optimization (SMO) algorithm to obtain the optimal portfolio. The remarkable feature of the algorithm is that it is extremely easy to implement, and it can be extended to any size of portfolio selection problems for finding an exact optimal solution.

Suggested Citation

  • Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:693-700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00516-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Best & Jaroslava Hlouskova, 2000. "The efficient frontier for bounded assets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 195-212, November.
    2. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    5. Jong-Shi Pang, 1980. "A New and Efficient Algorithm for a Class of Portfolio Selection Problems," Operations Research, INFORMS, vol. 28(3-part-ii), pages 754-767, June.
    6. Voros, J., 1986. "Portfolio analysis--an analytic derivation of the efficient portfolio frontier," European Journal of Operational Research, Elsevier, vol. 23(3), pages 294-300, March.
    7. Leon, T. & Liern, V. & Vercher, E., 2002. "Viability of infeasible portfolio selection problems: A fuzzy approach," European Journal of Operational Research, Elsevier, vol. 139(1), pages 178-189, May.
    8. Tanaka, Hideo & Guo, Peijun, 1999. "Portfolio selection based on upper and lower exponential possibility distributions," European Journal of Operational Research, Elsevier, vol. 114(1), pages 115-126, April.
    9. Zhang, Wei-Guo & Wang, Ying-Luo, 2008. "An analytic derivation of admissible efficient frontier with borrowing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 229-243, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernard, C. & Vanduffel, S., 2014. "Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection," European Journal of Operational Research, Elsevier, vol. 234(2), pages 469-480.
    2. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2010. "Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming," European Journal of Operational Research, Elsevier, vol. 204(3), pages 581-588, August.
    3. Corazza, Marco, 2021. "A note on “Portfolio selection under possibilistic mean-variance utility and a SMO algorithm”," European Journal of Operational Research, Elsevier, vol. 288(1), pages 343-345.
    4. Zhang, Wei-Guo & Zhang, Xi-Li & Xu, Wei-Jun, 2010. "A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 493-499, June.
    5. Yu, Bosco Wing-Tong & Pang, Wan Kai & Troutt, Marvin D. & Hou, Shui Hung, 2009. "Objective comparisons of the optimal portfolios corresponding to different utility functions," European Journal of Operational Research, Elsevier, vol. 199(2), pages 604-610, December.
    6. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    7. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    8. Marco Corazza & Carla Nardelli, 2019. "Possibilistic mean–variance portfolios versus probabilistic ones: the winner is..," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 51-75, June.
    9. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    10. Xi-li Zhang & Wei-Guo Zhang & Wei-jun Xu & Wei-Lin Xiao, 2010. "Possibilistic Approaches to Portfolio Selection Problem with General Transaction Costs and a CLPSO Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 36(3), pages 191-200, October.
    11. Zhang, Wei-Guo & Zhang, Xili & Chen, Yunxia, 2011. "Portfolio adjusting optimization with added assets and transaction costs based on credibility measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 353-360.
    12. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.
    13. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    14. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    15. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    16. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    17. K. Liagkouras & K. Metaxiotis, 2019. "Improving the performance of evolutionary algorithms: a new approach utilizing information from the evolutionary process and its application to the fuzzy portfolio optimization problem," Annals of Operations Research, Springer, vol. 272(1), pages 119-137, January.
    18. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    19. Li, Xiang & Shou, Biying & Qin, Zhongfeng, 2012. "An expected regret minimization portfolio selection model," European Journal of Operational Research, Elsevier, vol. 218(2), pages 484-492.
    20. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    21. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    22. Chen, An & Li, Hong & Schultze, Mark, 2022. "Collective longevity swap: A novel longevity risk transfer solution and its economic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 227-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    2. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    3. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    4. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    5. Zhang, Wei-Guo & Zhang, Xili & Chen, Yunxia, 2011. "Portfolio adjusting optimization with added assets and transaction costs based on credibility measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 353-360.
    6. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    7. Zhang, Wei-Guo & Wang, Ying-Luo, 2008. "An analytic derivation of admissible efficient frontier with borrowing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 229-243, January.
    8. Li, Ting & Zhang, Weiguo & Xu, Weijun, 2013. "Fuzzy possibilistic portfolio selection model with VaR constraint and risk-free investment," Economic Modelling, Elsevier, vol. 31(C), pages 12-17.
    9. Kuen-Suan Chen & Ruey-Chyn Tsaur & Nei-Chih Lin, 2022. "Dimensions Analysis to Excess Investment in Fuzzy Portfolio Model from the Threshold of Guaranteed Return Rates," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    10. Zhang, Wei-Guo & Zhang, Xi-Li & Xu, Wei-Jun, 2010. "A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 493-499, June.
    11. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    12. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    13. Wei Chen, 2009. "Weighted portfolio selection models based on possibility theory," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 115-127, June.
    14. Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
    15. Li, Ting & Zhang, Weiguo & Xu, Weijun, 2015. "A fuzzy portfolio selection model with background risk," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 505-513.
    16. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    17. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    18. Liu, Yong-Jun & Zhang, Wei-Guo, 2013. "Fuzzy portfolio optimization model under real constraints," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 704-711.
    19. Ruey-Chyn Tsaur & Chien-Liang Chiu & Yin-Yin Huang, 2021. "Fuzzy Portfolio Selection in COVID-19 Spreading Period Using Fuzzy Goal Programming Model," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    20. Kuen-Suan Chen & Yin-Yin Huang & Ruey-Chyn Tsaur & Nei-Yu Lin, 2023. "Fuzzy Portfolio Selection in the Risk Attitudes of Dimension Analysis under the Adjustable Security Proportions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:693-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.