IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v50y2023i2d10.1007_s11116-021-10254-9.html
   My bibliography  Save this article

An exploratory analysis of alternative travel behaviors of ride-hailing users

Author

Listed:
  • Rezwana Rafiq

    (University of California)

  • Michael G. McNally

    (University of California)

Abstract

The emergence of ride-hailing, technology-enabled on-demand services such as Uber and Lyft, has arguably impacted the daily travel behavior of users. This study analyzes the travel behavior of ride-hailing users first from conventional person- and trip-based perspectives and then from an activity-based approach that uses tours and activity patterns as basic units of analysis. While tours by definition are more easily identified and classified, daily patterns theoretically better represent overall travel behavior but are simultaneously more difficult to explain. We thus consider basic descriptive analyses for tours and a more elaborate approach, Latent Class Analysis, to describe pattern behavior. The empirical results for tours using data from the 2017 National Household Travel Survey show that 76% of ride-hailing tours can be represented by five dominant tour types with non-work tours being the most frequent. The Latent Class model suggests that the ride-hailing users can be divided into four distinct classes, each with a representative activity-travel pattern defining ride-hailing usage. Class 1 was composed of younger, employed people who used ride-hailing to commute to work. Single, older individuals comprised Class 2 and used ride-hailing for midday maintenance activities. Class 3 represented younger, employed individuals who used ride-hailing for discretionary purposes in the evening. Last, Class 4 members used ride-hailing for mode change purposes. Since each identified class has different activity-travel patterns, they will show different responses to policy directives. The results can assist ride-hailing operators in addressing evolving travel needs as users respond to various policy constraints.

Suggested Citation

  • Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
  • Handle: RePEc:kap:transp:v:50:y:2023:i:2:d:10.1007_s11116-021-10254-9
    DOI: 10.1007/s11116-021-10254-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10254-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10254-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young, Mischa & Farber, Steven, 2019. "The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 383-392.
    2. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    3. Jarad Beckman & Konstadinos Goulias, 2008. "Immigration, residential location, car ownership, and commuting behavior: a multivariate latent class analysis from California," Transportation, Springer, vol. 35(5), pages 655-671, August.
    4. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    5. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    6. Molin, Eric & Mokhtarian, Patricia & Kroesen, Maarten, 2016. "Multimodal travel groups and attitudes: A latent class cluster analysis of Dutch travelers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 14-29.
    7. Nair, Gopindra S. & Bhat, Chandra R. & Batur, Irfan & Pendyala, Ram M. & Lam, William H.K., 2020. "A model of deadheading trips and pick-up locations for ride-hailing service vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 289-308.
    8. Young, Mischa & Farber, Steven, 2019. "The Who, Why, and When of Uber and other Ride-hailing Trips: An Examination of a Large Sample Household Travel Survey," OSF Preprints x7ryj, Center for Open Science.
    9. Hall, Jonathan D. & Palsson, Craig & Price, Joseph, 2018. "Is Uber a substitute or complement for public transit?," Journal of Urban Economics, Elsevier, vol. 108(C), pages 36-50.
    10. Contreras, Seth D. & Paz, Alexander, 2018. "The effects of ride-hailing companies on the taxicab industry in Las Vegas, Nevada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 115(C), pages 63-70.
    11. Anne Brown, 2019. "Redefining Car Access," Journal of the American Planning Association, Taylor & Francis Journals, vol. 85(2), pages 83-95, April.
    12. Wadud, Zia, 2020. "An examination of the effects of ride-hailing services on airport parking demand," Journal of Air Transport Management, Elsevier, vol. 84(C).
    13. Felix Haifeng Liao & Steven Farber & Reid Ewing, 2015. "Compact development and preference heterogeneity in residential location choice behaviour: A latent class analysis," Urban Studies, Urban Studies Journal Limited, vol. 52(2), pages 314-337, February.
    14. de Souza Silva, Laize Andréa & de Andrade, Maurício Oliveira & Alves Maia, Maria Leonor, 2018. "How does the ride-hailing systems demand affect individual transport regulation?," Research in Transportation Economics, Elsevier, vol. 69(C), pages 600-606.
    15. Fangru Wang & Catherine L. Ross, 2019. "New potential for multimodal connection: exploring the relationship between taxi and transit in New York City (NYC)," Transportation, Springer, vol. 46(3), pages 1051-1072, June.
    16. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    17. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jie & Liu, Yue & Zhao, Jing, 2024. "Tailoring age-friendly technology-enabled transportation service solutions in rural communities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    2. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2024. "Examining market segmentation to increase bike-share use and enhance equity: The case of the greater Sacramento region," Transport Policy, Elsevier, vol. 145(C), pages 279-290.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    2. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Nur Oktaviani Widiastuti & Muhammad Zudhy Irawan, 2024. "Ride-Hailing Preferences for First- and Last-Mile Connectivity at Intercity Transit Hubs," Sustainability, MDPI, vol. 16(7), pages 1-20, April.
    4. Zou, Zhenpeng & Cirillo, Cinzia, 2021. "Does ridesourcing impact driving decisions: A survey weighted regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 1-12.
    5. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    6. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
    7. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    8. Xiong, Ziyue & Jian Li, & Wu, Hangbin, 2021. "Understanding operation patterns of urban online ride-hailing services: A case study of Xiamen," Transport Policy, Elsevier, vol. 101(C), pages 100-118.
    9. Young, Mischa & Allen, Jeff & Farber, Steven, 2020. "Measuring when Uber behaves as a substitute or supplement to transit: An examination of travel-time differences in Toronto," Journal of Transport Geography, Elsevier, vol. 82(C).
    10. Nair, Gopindra S. & Bhat, Chandra R. & Batur, Irfan & Pendyala, Ram M. & Lam, William H.K., 2020. "A model of deadheading trips and pick-up locations for ride-hailing service vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 289-308.
    11. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Relationship between Regular Use of Ridesourcing and Frequency of Public Transport Use in the MENA Region (Tehran and Cairo)," Sustainability, MDPI, vol. 12(19), pages 1-19, October.
    12. Agrawal, David R. & Zhao, Weihua, 2023. "Taxing Uber," Journal of Public Economics, Elsevier, vol. 221(C).
    13. Maria Vega-Gonzalo & Álvaro Aguilera-García & Juan Gomez & José Manuel Vassallo, 2024. "Traditional taxi, e-hailing or ride-hailing? A GSEM approach to exploring service adoption patterns," Transportation, Springer, vol. 51(4), pages 1239-1278, August.
    14. Lee, Yongsung & Lee, Bumsoo, 2022. "What’s eating public transit in the United States? Reasons for declining transit ridership in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 126-143.
    15. Li, Shengxiao(Alex) & Zhai, Wei & Jiao, Junfeng & Wang, Chao (Kenneth), 2022. "Who loses and who wins in the ride-hailing era? A case study of Austin, Texas," Transport Policy, Elsevier, vol. 120(C), pages 130-138.
    16. Henao, Alejandro & Marshall, Wesley E., 2019. "An analysis of the individual economics of ride-hailing drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 440-451.
    17. Daniel Oviedo & Isabel Granada & Daniel Perez-Jaramillo, 2020. "Ridesourcing and Travel Demand: Potential Effects of Transportation Network Companies in Bogotá," Sustainability, MDPI, vol. 12(5), pages 1-16, February.
    18. Young, Mischa & Allen, Jeff & Farber, Steven, 2019. "Measuring when Uber behaves as a substitute or complement to transit: An examination of travel-time differences in Toronto," OSF Preprints hvbma, Center for Open Science.
    19. Nejc Geržinič & Niels Oort & Sascha Hoogendoorn-Lanser & Oded Cats & Serge Hoogendoorn, 2023. "Potential of on-demand services for urban travel," Transportation, Springer, vol. 50(4), pages 1289-1321, August.
    20. Blumenberg, Evelyn & Paul, Julene & Pierce, Gregory, 2021. "Travel in the digital age: Vehicle ownership and technology-facilitated accessibility," Transport Policy, Elsevier, vol. 103(C), pages 86-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:50:y:2023:i:2:d:10.1007_s11116-021-10254-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.