IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v40y2017i4p434-448.html
   My bibliography  Save this article

Accommodating preference heterogeneity in commuting mode choice: an empirical investigation in Shaoxing, China

Author

Listed:
  • Xuemei Fu
  • Zhicai Juan

Abstract

A latent class model is developed to accommodate preference heterogeneity across commuters with respect to their mode choice between electric bike, private car, and public bus within the context of China. A three-segment solution – ‘electric bike individuals’, ‘private car addicts’, and ‘public bus enthusiasts’ – is identified, each characterized by heterogeneous preferences regarding specific mode attributes and unique socio-demographic profile. The choice model confirms the determinative effects of perceived alternative attributes on commuting mode choice, while the traditionally used objective attributes – travel time and cost – are found to have relatively small influences. The membership model provides solid explanations for these segment-specific preferences. This study provides a better understanding of the nature of mode choice behavior, which can be useful for strategies tailored to a specific segment in order to promote the use of sustainable transport modes.

Suggested Citation

  • Xuemei Fu & Zhicai Juan, 2017. "Accommodating preference heterogeneity in commuting mode choice: an empirical investigation in Shaoxing, China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 434-448, May.
  • Handle: RePEc:taf:transp:v:40:y:2017:i:4:p:434-448
    DOI: 10.1080/03081060.2017.1300240
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2017.1300240
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2017.1300240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiou, Yu-Chiun & Jou, Rong-Chang & Kao, Chu-Yun & Fu, Chiang, 2013. "The adoption behaviours of freeway electronic toll collection: A latent class modelling approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 266-280.
    2. Cristina Pronello & Cristian Camusso, 2011. "Travellers’ profiles definition using statistical multivariate analysis of attitudinal variables," Post-Print halshs-01084027, HAL.
    3. Tai-Yu Ma & Philippe Gerber & Samuel Carpentier & Sylvain Klein, 2015. "Mode choice with latent preference heterogeneity: a case study for employees of the EU institutions in Luxembourg," Post-Print halshs-01132437, HAL.
    4. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    6. Anable, Jillian, 2005. "'Complacent Car Addicts' or 'Aspiring Environmentalists'? Identifying travel behaviour segments using attitude theory," Transport Policy, Elsevier, vol. 12(1), pages 65-78, January.
    7. Walker, Joan & Ben-Akiva, Moshe, 2002. "Generalized random utility model," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 303-343, July.
    8. Teichert, Thorsten & Shehu, Edlira & von Wartburg, Iwan, 2008. "Customer segmentation revisited: The case of the airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 227-242, January.
    9. Arunotayanun, Kriangkrai & Polak, John W., 2011. "Taste heterogeneity and market segmentation in freight shippers' mode choice behaviour," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 138-148, March.
    10. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    11. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    12. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    13. Pronello, Cristina & Camusso, Cristian, 2011. "Travellers’ profiles definition using statistical multivariate analysis of attitudinal variables," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1294-1308.
    14. Wen, Chieh-Hua & Lai, Shan-Ching, 2010. "Latent class models of international air carrier choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 211-221, March.
    15. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    16. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Fowri, Hamid R. & Seyedabrishami, Seyedehsan, 2020. "Assessment of urban transportation pricing policies with incorporation of unobserved heterogeneity," Transport Policy, Elsevier, vol. 99(C), pages 12-19.
    3. Sanjana Hossain & Md. Sami Hasnine & Khandker Nurul Habib, 2021. "A latent class joint mode and departure time choice model for the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1217-1239, June.
    4. Zhou, Heng & Norman, Richard & Xia, Jianhong(Cecilia) & Hughes, Brett & Kelobonye, Keone & Nikolova, Gabi & Falkmer, Torbjorn, 2020. "Analysing travel mode and airline choice using latent class modelling: A case study in Western Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 187-205.
    5. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt A., 2020. "Shippers’ willingness to delegate modal control in freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
    7. Xuemei Fu, 2021. "How habit moderates the commute mode decision process: integration of the theory of planned behavior and latent class choice model," Transportation, Springer, vol. 48(5), pages 2681-2707, October.
    8. Siliang Luan & Qingfang Yang & Zhongtai Jiang & Huxing Zhou & Fanyun Meng, 2022. "Analyzing Commute Mode Choice Using the LCNL Model in the Post-COVID-19 Era: Evidence from China," IJERPH, MDPI, vol. 19(9), pages 1-26, April.
    9. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    10. Haiyan Zhu & Hongzhi Guan & Yan Han & Wanying Li, 2019. "A Study of Tourists’ Holiday Rush-Hour Avoidance Travel Behavior Considering Psychographic Segmentation," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    11. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    12. Jing Lu & Cheng Lv & Zhongzhen Yang & Mark Hansen, 2019. "Market Segmentation of New Gateway Airports Incorporating Passengers’ Curiosity," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    13. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    14. Hetrakul, Pratt & Cirillo, Cinzia, 2014. "A latent class choice based model system for railway optimal pricing and seat allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 68-83.
    15. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    16. Abenoza, Roberto F. & Ettema, Dick F. & Susilo, Yusak O., 2018. "Do accessibility, vulnerability, opportunity, and travel characteristics have uniform impacts on the traveler’s experience?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 38-51.
    17. Howard, Gregory & Roe, Brian E., 2013. "Stripping Because You Want to Versus Stripping Because the Money is Good: A Latent Class Analysis of Farmer Preferences Regarding Filter Strip Programs," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149821, Agricultural and Applied Economics Association.
    18. Ruben van de Geer & Arnoud V. den Boer, 2022. "Price Optimization Under the Finite-Mixture Logit Model," Management Science, INFORMS, vol. 68(10), pages 7480-7496, October.
    19. Vij, Akshay & Walker, Joan L., 2014. "Preference endogeneity in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 90-105.
    20. Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:40:y:2017:i:4:p:434-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.