IDEAS home Printed from https://ideas.repec.org/a/eee/ecotra/v4y2015i3p135-146.html
   My bibliography  Save this article

Traffic management: An outlook

Author

Listed:
  • Kurzhanskiy, Alex A.
  • Varaiya, Pravin

Abstract

Traffic congestion is caused by inefficient road operations and by excess demand. Inefficient traffic control is pervasive. Most urban streets and freeways do not have an adequate traffic sensing infrastructure, so one does not know how much congestion there is, its cause, or whether congestion mitigation projects have met the expected improvement. In the absence of adequate information, neither road operators nor travelers can gauge how poorly the road system is operated. Because the traffic changes randomly, the road system should be managed by effective feedback control of signals at intersections and at on-ramps. These control techniques are well known, and they have been successfully adopted in isolated road networks in different parts of the world. The investment in sensing needed to implement these control techniques is trivial compared to the benefits of an efficiently operated road system. But management is not able to quantify road system performance or how much improvement is possible and at what cost. Excess demand can be eliminated by appropriate incentives, including pricing. But empirical analysis of popular approaches such as HOV and HOT lanes suggests that they are ineffective unless the freeways are also efficiently managed. New ITS technologies, such as ‘integrated corridor management’ systems, while promising in theory, are likely to fail in the absence of a comprehensive traffic measurement system. More valuable might be initiatives that seek to shift modes away from private auto, adding bicycle and bus lanes, ridesharing, and telecommuting. Most of the data used in this analysis is from California.

Suggested Citation

  • Kurzhanskiy, Alex A. & Varaiya, Pravin, 2015. "Traffic management: An outlook," Economics of Transportation, Elsevier, vol. 4(3), pages 135-146.
  • Handle: RePEc:eee:ecotra:v:4:y:2015:i:3:p:135-146
    DOI: 10.1016/j.ecotra.2015.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S221201221500009X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecotra.2015.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    2. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    3. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coogan, Samuel & Dutreix, Maxence, 2017. "Traffic Predictive Control: Case Study and Evaluation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0bs645m2, Institute of Transportation Studies, UC Berkeley.
    2. Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.
    3. Horowitz, Roberto & Kurzhanskiy, Alex A. & Wright, Mathew, 2018. "HOT Lane Simulation Tools," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4ff207ng, Institute of Transportation Studies, UC Berkeley.
    4. Andrea Pompigna & Raffaele Mauro, 2022. "A Statistical Simulation Model for the Analysis of the Traffic Flow Reliability and the Probabilistic Assessment of the Circulation Quality on a Freeway Segment," Sustainability, MDPI, vol. 14(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    2. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    3. Arnott, Richard & Inci, Eren, 2010. "The stability of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 68(3), pages 260-276, November.
    4. Meyer, Ina & Kaniovski, Serguei & Scheffran, Jürgen, 2012. "Scenarios for regional passenger car fleets and their CO2 emissions," Energy Policy, Elsevier, vol. 41(C), pages 66-74.
    5. S. R. Milyakin, 2023. "Motorization: History, Factors and Patterns," Studies on Russian Economic Development, Springer, vol. 34(2), pages 254-262, April.
    6. Bastian, Anne & Börjesson, Maria, 2014. "It's the economy, stupid: increasing fuel price is enough to explain Peak Car in Sweden," Working papers in Transport Economics 2014:15, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    7. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    8. Wang, Rui & Yuan, Quan, 2013. "Parking practices and policies under rapid motorization: The case of China," Transport Policy, Elsevier, vol. 30(C), pages 109-116.
    9. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    10. Russo, Antonio & Adler, Martin W. & Liberini, Federica & van Ommeren, Jos N., 2021. "Welfare losses of road congestion: Evidence from Rome," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    11. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    12. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    13. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    14. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    15. David P. Ashmore & Roselle Thoreau & Corina Kwami & Nicola Christie & Nicholas A. Tyler, 2020. "Using thematic analysis to explore symbolism in transport choice across national cultures," Transportation, Springer, vol. 47(2), pages 607-640, April.
    16. Wadud, Zia, 2020. "The effects of e-ridehailing on motorcycle ownership in an emerging-country megacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 301-312.
    17. Matthew Williams & Non Arkaraprasertkul, 2017. "Mobility in a global city: Making sense of Shanghai’s growing automobile-dominated transport culture," Urban Studies, Urban Studies Journal Limited, vol. 54(10), pages 2232-2248, August.
    18. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    19. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    20. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecotra:v:4:y:2015:i:3:p:135-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecotra .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.