IDEAS home Printed from https://ideas.repec.org/a/eee/ecosys/v32y2008i2p167-176.html
   My bibliography  Save this article

Interpreting Value at Risk (VaR) forecasts

Author

Listed:
  • Gregory, Allan W.
  • Reeves, Jonathan J.

Abstract

Value at Risk (VaR) forecasts have been increasingly accepted globally by both risk managers and regulators as a tool to identify and control exposure to financial market risk. However, modern portfolios are characterized by a constantly changing composition of security holdings that reflect portfolio managers' strategies, expected prices, and net cash flows into the portfolio. As a result of these factors, portfolio returns are time-varying mixtures of distributions which are unlikely to be well approximated by conventional methods.

Suggested Citation

  • Gregory, Allan W. & Reeves, Jonathan J., 2008. "Interpreting Value at Risk (VaR) forecasts," Economic Systems, Elsevier, vol. 32(2), pages 167-176, June.
  • Handle: RePEc:eee:ecosys:v:32:y:2008:i:2:p:167-176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0939-3625(08)00002-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter F. Christoffersen & Francis X. Diebold & Til Schuermann, 1998. "Horizon problems and extreme events in financial risk management," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 109-118.
    2. Danielsson, Jon, 2002. "The emperor has no clothes: Limits to risk modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1273-1296, July.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    4. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    5. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    6. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    7. Berger, Allen N. & Herring, Richard J. & Szego, Giorgio P., 1995. "The role of capital in financial institutions," Journal of Banking & Finance, Elsevier, vol. 19(3-4), pages 393-430, June.
    8. Consigli, Giorgio, 2002. "Tail estimation and mean-VaR portfolio selection in markets subject to financial instability," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1355-1382, July.
    9. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    10. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    11. Bradley, Michael G. & Wambeke, Carol A. & Whidbee, David A., 1991. "Risk weights, risk-based capital and deposit insurance," Journal of Banking & Finance, Elsevier, vol. 15(4-5), pages 875-893, September.
    12. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordon Rausser & William Balson & Reid Stevens, 2010. "Centralized clearing for over‐the‐counter derivatives," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 2(4), pages 346-359, November.
    2. Stefano Ferretti, 2023. "On the Modeling and Simulation of Portfolio Allocation Schemes: an Approach Based on Network Community Detection," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 969-1005, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    2. Guermat, Cherif & Harris, Richard D. F., 2002. "Forecasting value at risk allowing for time variation in the variance and kurtosis of portfolio returns," International Journal of Forecasting, Elsevier, vol. 18(3), pages 409-419.
    3. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    4. Christophe HURLIN & Sessi TOKPAVI, 2007. "Une évaluation des procédures de Backtesting," LEO Working Papers / DR LEO 1716, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    5. Jeremy Berkowitz & James M. O'Brien, 2001. "How accurate are Value-at-Risk models at commercial banks?," Finance and Economics Discussion Series 2001-31, Board of Governors of the Federal Reserve System (U.S.).
    6. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    7. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    8. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    9. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    10. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    11. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    12. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    13. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    14. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    15. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    16. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    17. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    18. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    19. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    20. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosys:v:32:y:2008:i:2:p:167-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://edirc.repec.org/data/osteide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.