IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00585938.html
   My bibliography  Save this paper

Accurate and Robust Tests for Indirect Inference

Author

Listed:
  • Veronika Czellar

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Elvezio Ronchetti

    (Department of Econometrics - UNIGE - Université de Genève = University of Geneva)

Abstract

In this paper we propose accurate parameter and over-identification tests for indirect inference. Under the null hypothesis the new tests are asymptotically χ2-distributed with a relative error of order n−1. They exhibit better finite sample accuracy than classical tests for indirect inference, which have the same asymptotic distribution but an absolute error of order n−1/2. Robust versions of the tests are also provided. We illustrate their accuracy in nonlinear regression, Poisson regression with overdispersion and diffusion models.

Suggested Citation

  • Veronika Czellar & Elvezio Ronchetti, 2010. "Accurate and Robust Tests for Indirect Inference," Post-Print hal-00585938, HAL.
  • Handle: RePEc:hal:journl:hal-00585938
    DOI: 10.1093/biomet/asq040
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    2. Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
    3. Lorenzo Camponovo & Taisuke Otsu, 2017. "Relative error accurate statistic based on nonparametric likelihood," STICERD - Econometrics Paper Series 593, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Anna Gottard & Giorgio Calzolari, 2014. "Alternative estimating procedures for multiple membership logit models with mixed effects: indirect inference and data cloning," Econometrics Working Papers Archive 2014_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    5. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2021. "Relative error accurate statistic based on nonparametric likelihood," LSE Research Online Documents on Economics 107521, London School of Economics and Political Science, LSE Library.
    6. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    7. Gubhinder Kundhi & Paul Rilstone, 2015. "Saddlepoint expansions for GEL estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 1-24, March.
    8. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    9. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00585938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.