IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v158y2017icp103-116.html
   My bibliography  Save this article

Nonparametric tests for multi-parameter M-estimators

Author

Listed:
  • Kolassa, John E.
  • Robinson, John

Abstract

We consider likelihood ratio like test statistics based on M-estimators for multi-parameter hypotheses for some commonly used parametric models where the assumptions on which the standard test statistics are based are not justified. The nonparametric test statistics are based on empirical exponential families and permit us to give bootstrap methods for the tests. We further consider saddlepoint approximations to the tail probabilities used in these tests. This generalizes earlier work of Robinson et al. (2003) in two ways. First, we generalize from bootstraps based on resampling vectors of both response and explanatory variables to include bootstrapping residuals for fixed explanatory variables, resulting in a surprising result for the weighted resampling. Second, we obtain a theorem for tail probabilities under weak conditions providing essential justification for the approximation to bootstrap results for both cases. We use as examples linear regression, non-linear regression and generalized linear models under models with independent and identically distributed residuals or vectors of observations, giving numerical illustrations of the results.

Suggested Citation

  • Kolassa, John E. & Robinson, John, 2017. "Nonparametric tests for multi-parameter M-estimators," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 103-116.
  • Handle: RePEc:eee:jmvana:v:158:y:2017:i:c:p:103-116
    DOI: 10.1016/j.jmva.2017.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16302007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    2. Chris Field & John Robinson & Elvezio Ronchetti, 2008. "Saddlepoint approximations for multivariate M-estimates with applications to bootstrap accuracy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 205-224, March.
    3. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    4. Chris Field & John Robinson & Elvezio Ronchetti, 2008. "Saddlepoint approximations for multivariate M-estimates with applications to bootstrap accuracy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 225-227, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    2. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    3. Almudevar, Anthony, 2016. "Higher order density approximations for solutions to estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 424-439.
    4. Stella Kitromilidou & Konstantinos Fokianos, 2016. "Mallows’ quasi-likelihood estimation for log-linear Poisson autoregressions," Statistical Inference for Stochastic Processes, Springer, vol. 19(3), pages 337-361, October.
    5. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.
    6. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    7. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    8. Fiaschi, Davide & Giuliani, Elisa & Nieri, Federica & Salvati, Nicola, 2020. "How bad is your company? Measuring corporate wrongdoing beyond the magic of ESG metrics," Business Horizons, Elsevier, vol. 63(3), pages 287-299.
    9. Ricardo A. Maronna & Victor J. Yohai, 2021. "Optimal robust estimators for families of distributions on the integers," Statistical Papers, Springer, vol. 62(5), pages 2269-2281, October.
    10. Krichene, H. & Geiger, T. & Frieler, K. & Willner, S.N. & Sauer, I. & Otto, C., 2021. "Long-term impacts of tropical cyclones and fluvial floods on economic growth – Empirical evidence on transmission channels at different levels of development," World Development, Elsevier, vol. 144(C).
    11. A. García-Pérez, 2012. "A linear approximation to the power function of a test," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 855-875, October.
    12. Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
    13. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    14. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Xu, Wanghong, 2019. "A novel robust approach for analysis of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 83-95.
    15. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    16. Cantoni, Eva & de Luna, Xavier, 2020. "Semiparametric inference with missing data: Robustness to outliers and model misspecification," Econometrics and Statistics, Elsevier, vol. 16(C), pages 108-120.
    17. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
    18. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2009. "Robust empirical likelihood inference for longitudinal data," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2101-2108, October.
    19. Riani, Marco & Atkinson, Anthony C., 2010. "Robust model selection with flexible trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3300-3312, December.
    20. Alfio Marazzi & Marina Valdora & Victor Yohai & Michael Amiguet, 2019. "A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 223-241, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:158:y:2017:i:c:p:103-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.