IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v39y2021i2p482-492.html
   My bibliography  Save this article

Gaussian Processes and Bayesian Moment Estimation

Author

Listed:
  • Jean-Pierre Florens
  • Anna Simoni

Abstract

Given a set of moment restrictions (MRs) that overidentify a parameter θ, we investigate a semiparametric Bayesian approach for inference on θ that does not restrict the data distribution F apart from the MRs. As main contribution, we construct a degenerate Gaussian process prior that, conditionally on θ, restricts the F generated by this prior to satisfy the MRs with probability one. Our prior works even in the more involved case where the number of MRs is larger than the dimension of θ. We demonstrate that the corresponding posterior for θ is computationally convenient. Moreover, we show that there exists a link between our procedure, the generalized empirical likelihood with quadratic criterion and the limited information likelihood-based procedures. We provide a frequentist validation of our procedure by showing consistency and asymptotic normality of the posterior distribution of θ. The finite sample properties of our method are illustrated through Monte Carlo experiments and we provide an application to demand estimation in the airline market.

Suggested Citation

  • Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
  • Handle: RePEc:taf:jnlbes:v:39:y:2021:i:2:p:482-492
    DOI: 10.1080/07350015.2019.1668799
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2019.1668799
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2019.1668799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    3. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    4. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692106.
    5. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    6. Jean-Pierre Florens & Anna Simoni, 2012. "Regularized Posteriors in Linear Ill-Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 214-235, June.
    7. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    8. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    9. Giuseppe Ragusa, 2007. "Bayesian Likelihoods for Moment Condition Models," Working Papers 060714, University of California-Irvine, Department of Economics.
    10. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871549.
    11. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    12. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-519, March.
    13. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871532.
    14. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    15. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    16. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692090.
    17. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    18. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    19. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    2. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    3. Gallant, A. Ronald & Hong, Han & Leung, Michael P. & Li, Jessie, 2022. "Constrained estimation using penalization and MCMC," Journal of Econometrics, Elsevier, vol. 228(1), pages 85-106.
    4. Dante Amengual & Enrique Sentana, 2016. "Comments on: Reflections on the Probability Space Induced by Moment Conditions with Implications for Bayesian Inference," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 248-252.
    5. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.
    6. Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Oct 2024.
    7. Christopher D. Walker, 2023. "Parametrization, Prior Independence, and the Semiparametric Bernstein-von Mises Theorem for the Partially Linear Model," Papers 2306.03816, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    2. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    3. Lavergne, Pascal, 2015. "Assessing the Approximate Validity of Moment Restrictions," TSE Working Papers 15-562, Toulouse School of Economics (TSE), revised May 2020.
    4. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    5. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    6. Otsu, Taisuke, 2011. "Moderate deviations of generalized method of moments and empirical likelihood estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.
    7. Hahn, Jinyong & Newey, Whitney K. & Smith, Richard J., 2014. "Neglected heterogeneity in moment condition models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 86-100.
    8. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    9. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    10. Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
    11. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2021. "Relative error accurate statistic based on nonparametric likelihood," LSE Research Online Documents on Economics 107521, London School of Economics and Political Science, LSE Library.
    12. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    13. Martyn Andrews & Obbey Elamin & Alastair R. Hall & Kostas Kyriakoulis & Matthew Sutton, 2014. "Inference in the Presence of Redundant Moment Conditions and the Impact of Government Health Expenditure on Health Outcomes in England," Economics Discussion Paper Series 1401, Economics, The University of Manchester.
    14. Yuichi Kitamura, 2020. "A Comment on: “On the Informativeness of Descriptive Statistics for Structural Estimates” by Isaiah Andrews, Matthew Gentzkow, and Jesse M. Shapiro," Econometrica, Econometric Society, vol. 88(6), pages 2265-2269, November.
    15. Taisuke Otsu & Chen Qiu, 2018. "Information theoretic approach to high dimensional multiplicative models: Stochastic discount factor and treatment effect," STICERD - Econometrics Paper Series 595, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Sueishi, Naoya, 2013. "Identification problem of the exponential tilting estimator under misspecification," Economics Letters, Elsevier, vol. 118(3), pages 509-511.
    17. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    18. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    19. Antoine, Bertille & Dovonon, Prosper, 2021. "Robust estimation with exponentially tilted Hellinger distance," Journal of Econometrics, Elsevier, vol. 224(2), pages 330-344.
    20. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.
    21. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:39:y:2021:i:2:p:482-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.