IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1796.html
   My bibliography  Save this paper

Robustness of Bootstrap in Instrumental Variable Regression

Author

Listed:

Abstract

This paper studies robustness of bootstrap inference methods for instrumental variable regression models. In particular, we compare the uniform weight and implied probability bootstrap approximations for parameter hypothesis test statistics by applying the breakdown point theory, which focuses on behaviors of the bootstrap quantiles when outliers take arbitrarily large values. The implied probabilities are derived from an information theoretic projection from the empirical distribution to a set of distributions satisfying orthogonality conditions for instruments. Our breakdown point analysis considers separately the effects of outliers in dependent variables, endogenous regressors, and instruments, and clarifies the situations where the implied probability bootstrap can be more robust than the uniform weight bootstrap against outliers. Effects of tail trimming introduced by Hill and Renault (2010) are also analyzed. Several simulation studies illustrate our theoretical findings.

Suggested Citation

  • Lorenzo Camponovo & Taisuke Otsu, 2011. "Robustness of Bootstrap in Instrumental Variable Regression," Cowles Foundation Discussion Papers 1796, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1796
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d17/d1796.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hadi, Ali S. & Luceno, Alberto, 1997. "Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 25(3), pages 251-272, August.
    2. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    5. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    6. Rodolphe Desbordes & Vincenzo Verardi, 2012. "A robust instrumental-variables estimator," Stata Journal, StataCorp LP, vol. 12(2), pages 169-181, June.
    7. Lorenzo Camponovo & Taisuke Otsu, 2012. "Breakdown point theory for implied probability bootstrap," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 32-55, February.
    8. Brown, Bryan W & Newey, Whitney K, 2002. "Generalized Method of Moments, Efficient Bootstrapping, and Improved Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 507-517, October.
    9. Jonathan B. Hill, 2013. "Least tail-trimmed squares for infinite variance autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 168-186, March.
    10. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    11. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    12. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    13. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    14. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    15. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    16. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    17. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    18. David Romer, 1993. "Openness and Inflation: Theory and Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 869-903.
    19. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    20. Back, Kerry & Brown, David P, 1993. "Implied Probabilities in GMM Estimators," Econometrica, Econometric Society, vol. 61(4), pages 971-975, July.
    21. Krasker, William S & Welsch, Roy E, 1985. "Resistant Estimation for Simultaneous-Equations Models Using Weighted Instrumental Variables," Econometrica, Econometric Society, vol. 53(6), pages 1475-1488, November.
    22. Lorenzo CAMPONOVO & Olivier SCAILLET & Fabio TROJANI, 2009. "Robust Resampling Methods for Time Series," Swiss Finance Institute Research Paper Series 09-38, Swiss Finance Institute.
    23. P. Hall & B. Presnell, 1999. "Intentionally biased bootstrap methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 143-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachel Bocquet & Christian Le Bas & Caroline Mothe & Nicolas Poussing, 2017. "CSR, Innovation, and Firm Performance in Sluggish Growth Contexts: A Firm-Level Empirical Analysis," Journal of Business Ethics, Springer, vol. 146(1), pages 241-254, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cep:stiecm:/2014/572 is not listed on IDEAS
    2. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    3. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    4. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    5. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    6. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    7. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    8. Hill, Jonathan B., 2015. "Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 131-152.
    9. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    10. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.
    11. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    12. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    13. Ramalho Joaquim J.S., 2005. "Small Sample Bias of Alternative Estimation Methods for Moment Condition Models: Monte Carlo Evidence for Covariance Structures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-20, March.
    14. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    15. Nicky L. Grant & Richard J. Smith, 2018. "GEL-based inference with unconditional moment inequality restrictions," CeMMAP working papers 23/18, Institute for Fiscal Studies.
    16. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    17. Nicky L. Grant & Richard J. Smith, 2018. "GEL-based inference with unconditional moment inequality restrictions," CeMMAP working papers CWP23/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Bravo, Francesco & Crudu, Federico, 2012. "Efficient bootstrap with weakly dependent processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3444-3458.
    19. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    20. Joachim Inkmann, 2010. "Estimating Firm Size Elasticities of Product and Process R&D," Economica, London School of Economics and Political Science, vol. 77(306), pages 384-402, April.
    21. Alain Guay & Florian Pelgrin, 2007. "Using Implied Probabilities to Improve Estimation with Unconditional Moment Restrictions," Cahiers de recherche 0747, CIRPEE.

    More about this item

    Keywords

    Bootstrap; Breakdown point; Instrumental variable regression;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.