IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i502p644-655.html
   My bibliography  Save this article

Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood

Author

Listed:
  • Howard D. Bondell
  • Leonard A. Stefanski

Abstract

Large- and finite-sample efficiency and resistance to outliers are the key goals of robust statistics. Although often not simultaneously attainable, we develop and study a linear regression estimator that comes close. Efficiency is obtained from the estimator's close connection to generalized empirical likelihood, and its favorable robustness properties are obtained by constraining the associated sum of (weighted) squared residuals. We prove maximum attainable finite-sample replacement breakdown point and full asymptotic efficiency for normal errors. Simulation evidence shows that compared to existing robust regression estimators, the new estimator has relatively high efficiency for small sample sizes and comparable outlier resistance. The estimator is further illustrated and compared to existing methods via application to a real dataset with purported outliers.

Suggested Citation

  • Howard D. Bondell & Leonard A. Stefanski, 2013. "Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 644-655, June.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:502:p:644-655
    DOI: 10.1080/01621459.2013.779847
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.779847
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.779847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    2. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    3. Alfio Marazzi, 2021. "Improving the Efficiency of Robust Estimators for the Generalized Linear Model," Stats, MDPI, vol. 4(1), pages 1-20, February.
    4. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    5. Maronna, Ricardo A. & Yohai, Victor J., 2015. "High finite-sample efficiency and robustness based on distance-constrained maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 262-274.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:502:p:644-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.