IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v243y2024i1s0304407624000654.html
   My bibliography  Save this article

Econometric causality: The central role of thought experiments

Author

Listed:
  • Heckman, James
  • Pinto, Rodrigo

Abstract

This paper examines the econometric causal model and the interpretation of empirical evidence based on thought experiments that was developed by Ragnar Frisch and Trygve Haavelmo. We compare the econometric causal model with two currently popular causal frameworks: the Neyman–Rubin causal model and the Do-Calculus. The Neyman–Rubin causal model is based on the language of potential outcomes and was largely developed by statisticians. Instead of being based on thought experiments, it takes statistical experiments as its foundation. The Do-Calculus, developed by Judea Pearl and co-authors, relies on Directed Acyclic Graphs (DAGs) and is a popular causal framework in computer science and applied mathematics. We make the case that economists who uncritically use these frameworks often discard the substantial benefits of the econometric causal model to the detriment of more informative analyses. We illustrate the versatility and capabilities of the econometric framework using causal models developed in economics.

Suggested Citation

  • Heckman, James & Pinto, Rodrigo, 2024. "Econometric causality: The central role of thought experiments," Journal of Econometrics, Elsevier, vol. 243(1).
  • Handle: RePEc:eee:econom:v:243:y:2024:i:1:s0304407624000654
    DOI: 10.1016/j.jeconom.2024.105719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624000654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
    2. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    3. Hansen, Lars Peter & Sargent, Thomas J., 1982. "Instrumental variables procedures for estimating linear rational expectations models," Journal of Monetary Economics, Elsevier, vol. 9(3), pages 263-296.
    4. Richard Blundell & Alan Duncan & Costas Meghir, 1998. "Estimating Labor Supply Responses Using Tax Reforms," Econometrica, Econometric Society, vol. 66(4), pages 827-862, July.
    5. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    6. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    7. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College," NBER Working Papers 9546, National Bureau of Economic Research, Inc.
    8. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    9. Flavio Cunha & James Heckman & Salvador Navarro, 2005. "Separating uncertainty from heterogeneity in life cycle earnings," Oxford Economic Papers, Oxford University Press, vol. 57(2), pages 191-261, April.
    10. Imai, Kosuke & Keele, Luke & Tingley, Dustin & Yamamoto, Teppei, 2011. "Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies," American Political Science Review, Cambridge University Press, vol. 105(4), pages 765-789, November.
    11. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute of Labor Economics (IZA).
    12. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    13. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    14. Aakvik, A. & Heckman, J.J. & Vytlacil, E.J., 1999. "Training Effects on Employment when the Training Effects are Heterogenous : an Application to Norwegian Vocational Rehabilitation Programs," Norway; Department of Economics, University of Bergen 0599, Department of Economics, University of Bergen.
    15. Heckman, James & Pinto, Rodrigo, 2015. "Causal Analysis After Haavelmo," Econometric Theory, Cambridge University Press, vol. 31(1), pages 115-151, February.
    16. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    17. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "2001 Lawrence R. Klein Lecture Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 361-422, May.
    18. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    19. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    20. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    21. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    22. James J. Heckman & Rodrigo Pinto, 2018. "Unordered Monotonicity," Econometrica, Econometric Society, vol. 86(1), pages 1-35, January.
    23. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    24. Rosa L. Matzkin, 2008. "Identification in Nonparametric Simultaneous Equations Models," Econometrica, Econometric Society, vol. 76(5), pages 945-978, September.
    25. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    26. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    27. Elie Tamer, 2003. "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 147-165.
    28. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    29. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    30. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    31. Olav Bjerkholt & Ariane Dupont, 2010. "Ragnar Frisch's Conception of Econometrics," History of Political Economy, Duke University Press, vol. 42(1), pages 21-73, Spring.
    32. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    33. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    34. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
    35. Rosa L. Matzkin, 2013. "Nonparametric Identification in Structural Economic Models," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 457-486, May.
    36. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    37. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    38. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    39. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    40. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    41. James J. Heckman, 2008. "Causalidad econométrica," Monetaria, CEMLA, vol. 0(3), pages 291-338, julio-sep.
    42. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    43. Rosa L. Matzkin, 2015. "Estimation of Nonparametric Models With Simultaneity," Econometrica, Econometric Society, vol. 83, pages 1-66, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pontus af Buren & Jurg Schweri, 2024. "Firms' training processes and their apprentices' education success," Economics of Education Working Paper Series 0225, University of Zurich, Department of Business Administration (IBW).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. Heckman & Rodrigo Pinto, 2022. "Causality and Econometrics," NBER Working Papers 29787, National Bureau of Economic Research, Inc.
    2. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    3. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    4. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    5. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    6. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    7. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    8. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    9. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    12. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    13. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    14. Binelli, Chiara & Menezes-Filho, Naercio, 2019. "Why Brazil fell behind in college education?," Economics of Education Review, Elsevier, vol. 72(C), pages 80-106.
    15. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    17. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    18. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    19. Anirban Basu & James J. Heckman & Salvador Navarro‐Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self‐selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157, November.
    20. Christian Belzil, 2008. "Testing the Specification of the Mincer Wage Equation," Annals of Economics and Statistics, GENES, issue 91-92, pages 427-451.

    More about this item

    Keywords

    Structural equation models; Causality; Causal inference; Directed acyclic graphs; Simultaneous causality;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:243:y:2024:i:1:s0304407624000654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.