IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v83y2015ip1-66.html
   My bibliography  Save this article

Estimation of Nonparametric Models With Simultaneity

Author

Listed:
  • Rosa L. Matzkin

Abstract

We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of nonparametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal.

Suggested Citation

  • Rosa L. Matzkin, 2015. "Estimation of Nonparametric Models With Simultaneity," Econometrica, Econometric Society, vol. 83, pages 1-66, January.
  • Handle: RePEc:wly:emetrp:v:83:y:2015:i::p:1-66
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Zincenko, 2023. "Nonparametric estimation of conditional densities by generalized random forests," Papers 2309.13251, arXiv.org, revised May 2024.
    2. Heckman, James & Pinto, Rodrigo, 2024. "Econometric causality: The central role of thought experiments," Journal of Econometrics, Elsevier, vol. 243(1).
    3. Heckman, James J. & Pinto, Rodrigo, 2022. "Causality and Econometrics," IZA Discussion Papers 15081, Institute of Labor Economics (IZA).
    4. Steven T. Berry & Philip A. Haile, 2020. "Nonparametric Identification of Differentiated Products Demand Using Micro Data," NBER Working Papers 27704, National Bureau of Economic Research, Inc.
    5. Richard Blundell & Dennis Kristensen & Rosa Matzkin, 2017. "Individual counterfactuals with multidimensional unobserved heterogeneity," CeMMAP working papers CWP60/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    7. Brice Romuald Gueyap Kounga, 2023. "Nonparametric Regression with Dyadic Data," Papers 2310.12825, arXiv.org.
    8. Allen, Roy, 2022. "Injectivity and the law of demand," Economics Letters, Elsevier, vol. 215(C).
    9. Evgeniy Ozhegov, 2015. "Identification in a class of nonparametric simultaneous equation models with sample selection (in Russian)," Quantile, Quantile, issue 13, pages 15-23, May.
    10. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    12. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    13. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    14. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:83:y:2015:i::p:1-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.