IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i06p1352-1386_00.html
   My bibliography  Save this article

Testing For Changes In Kendall’S Tau

Author

Listed:
  • Dehling, Herold
  • Vogel, Daniel
  • Wendler, Martin
  • Wied, Dominik

Abstract

For a bivariate time series ((Xi ,Yi))i=1,...,n, we want to detect whether the correlation between Xi and Yi stays constant for all i = 1,...n. We propose a nonparametric change-point test statistic based on Kendall’s tau. The asymptotic distribution under the null hypothesis of no change follows from a new U-statistic invariance principle for dependent processes. Assuming a single change-point, we show that the location of the change-point is consistently estimated. Kendall’s tau possesses a high efficiency at the normal distribution, as compared to the normal maximum likelihood estimator, Pearson’s moment correlation. Contrary to Pearson’s correlation coefficient, it shows no loss in efficiency at heavy-tailed distributions, and is therefore particularly suited for financial data, where heavy tails are common. We assume the data ((Xi ,Yi))i=1,...,n to be stationary and P-near epoch dependent on an absolutely regular process. The P-near epoch dependence condition constitutes a generalization of the usually considered Lp-near epoch dependence allowing for arbitrarily heavy-tailed data. We investigate the test numerically, compare it to previous proposals, and illustrate its application with two real-life data examples.

Suggested Citation

  • Dehling, Herold & Vogel, Daniel & Wendler, Martin & Wied, Dominik, 2017. "Testing For Changes In Kendall’S Tau," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1352-1386, December.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:06:p:1352-1386_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S026646661600044X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zacharias Psaradakis & Marián Vávra, 2022. "Using Triples to Assess Symmetry Under Weak Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1538-1551, October.
    2. Mariusz Czekala & Zbigniew Kurylek, 2021. "Inversions Distribution and Testing Correlation Changes for Rates of Return," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 633-650.
    3. Betken, Annika & Dehling, Herold & Nüßgen, Ines & Schnurr, Alexander, 2021. "Ordinal pattern dependence as a multivariate dependence measure," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    4. Manner, Hans & Rodríguez, Gabriel & Stöckler, Florian, 2024. "A changepoint analysis of exchange rate and commodity price risks for Latin American stock markets," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1385-1403.
    5. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
    6. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:06:p:1352-1386_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.