IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/27-08.html
   My bibliography  Save this paper

Copula-based nonlinear quantile autoregression

Author

Listed:
  • Xiaohong Chen

    (Institute for Fiscal Studies and Yale University)

  • Roger Koenker

    (Institute for Fiscal Studies and UCL)

  • Zhijie Xiao

    (Institute for Fiscal Studies)

Abstract

Parametric copulas are shown to be attractive devices for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific copula-based time series models offers some salient advantages over classical global parametric approaches. Consistency and asymptotic normality of the proposed quantile estimators are established under mild conditions, allowing for global misspecification of parametric copulas and marginals, and without assuming any mixing rate condition. These results lead to a general framework for inference and model specification testing of extreme conditional value-at-risk for financial time series data.

Suggested Citation

  • Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2008. "Copula-based nonlinear quantile autoregression," CeMMAP working papers CWP27/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:27/08
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp2708.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    2. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    3. White,Halbert, 1994. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521252805.
    4. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    5. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275.
    7. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    8. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(3), pages 295-313, December.
    9. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    10. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    11. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    12. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    2. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    3. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    4. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    5. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    6. Yuzhi Cai & Julian Stander, 2020. "The Threshold GARCH Model: Estimation and Density Forecasting for Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 395-424.
    7. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    9. Kim, Minjo & Lee, Sangyeol, 2016. "Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 1-19.
    10. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    11. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    12. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    13. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    14. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    15. Laurini, Márcio Poletti & Furlani, Luiz Gustavo Cassilatti & Portugal, Marcelo Savino, 2008. "Empirical market microstructure: An analysis of the BRL/US$ exchange rate market," Emerging Markets Review, Elsevier, vol. 9(4), pages 247-265, December.
    16. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    17. Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
    18. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    19. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    20. Klochkov, Yegor & Härdle, Wolfgang Karl & Xu, Xiu, 2019. "Localizing Multivariate CAViaR," IRTG 1792 Discussion Papers 2019-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:27/08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.