IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v76y2014icp523-535.html
   My bibliography  Save this article

SCOMDY models based on pair-copula constructions with application to exchange rates

Author

Listed:
  • Min, Aleksey
  • Czado, Claudia

Abstract

Vine pair-copula constructions (PCCs) provide an important milestone for the usage of multivariate copulas to model dependence. At present time PCCs are recognized to be the most flexible class of multivariate copulas. Vine PCCs and semiparametric copula-based dynamic (SCOMDY) models with ARMA-GARCH margins are combined. As building blocks of the PCCs, bivariate t-copulas are used. Exchange rates are considered as an application and their dependence structure is modelled using regular and canonical vines. A non-nested model comparison of the above SCOMDY models is performed using the adapted Voung’s test.

Suggested Citation

  • Min, Aleksey & Czado, Claudia, 2014. "SCOMDY models based on pair-copula constructions with application to exchange rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 523-535.
  • Handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:523-535
    DOI: 10.1016/j.csda.2012.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003064
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    3. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    4. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    5. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo, 2010. "On the simplified pair-copula construction -- Simply useful or too simplistic?," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1296-1310, May.
    6. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    7. Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
    8. Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
    9. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    10. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    11. Hans Manner & Olga Reznikova, 2012. "A Survey on Time-Varying Copulas: Specification, Simulations, and Application," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 654-687, November.
    12. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    13. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    14. Peter Xue‐Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320, June.
    15. Dias, Alexandra & Embrechts, Paul, 2010. "Modeling exchange rate dependence dynamics at different time horizons," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1687-1705, December.
    16. HEINEN, Andréas & VALDESOGO, Alfonso, 2009. "Asymmetric CAPM dependence for large dimensions: the Canonical Vine Autoregressive Model," LIDAM Discussion Papers CORE 2009069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Aleksey Min & Claudia Czado, 2010. "Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 511-546, Fall.
    18. Anonymous, 2009. "Abstract of the discussion," British Actuarial Journal, Cambridge University Press, vol. 15(1), pages 202-217, March.
    19. Fusai, Gianluca & Marena, Marina & Roncoroni, Andrea, 2008. "Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2033-2045, October.
    20. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    21. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Genhua & Wang, Xiangjin & Qiu, Hong, 2023. "Analyzing a dynamic relation between RMB exchange rate onshore and offshore during the extreme market conditions," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 408-417.
    2. Çekin, Semih Emre & Pradhan, Ashis Kumar & Tiwari, Aviral Kumar & Gupta, Rangan, 2020. "Measuring co-dependencies of economic policy uncertainty in Latin American countries using vine copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 207-217.
    3. Wing-Choong Lai & Kim-Leng Goh, 2019. "Impact of Chinese Yuan Devaluation on the Dependence Structure: The Archimedean Copula Approach," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-27, March.
    4. Rehman, Mobeen Ur & Katsiampa, Paraskevi & Zeitun, Rami & Vo, Xuan Vinh, 2023. "Conditional dependence structure and risk spillovers between Bitcoin and fiat currencies," Emerging Markets Review, Elsevier, vol. 55(C).
    5. Albulescu, Claudiu Tiberiu & Aubin, Christian & Goyeau, Daniel & Tiwari, Aviral Kumar, 2018. "Extreme co-movements and dependencies among major international exchange rates: A copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 56-69.
    6. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
    7. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    8. Huang, Wanling & Mollick, André Varella & Nguyen, Khoa Huu, 2016. "U.S. stock markets and the role of real interest rates," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 231-242.
    9. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    10. Jianxu Liu & Mengjiao Wang & Songsak Sriboonchitta, 2019. "Examining the Interdependence between the Exchange Rates of China and ASEAN Countries: A Canonical Vine Copula Approach," Sustainability, MDPI, vol. 11(19), pages 1-20, October.
    11. Spanhel, Fabian & Kurz, Malte S., 2016. "The partial copula: Properties and associated dependence measures," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 76-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    2. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    3. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    4. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    5. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    6. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    7. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    8. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    9. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    10. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    11. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    12. Aepli, Matthias D. & Frauendorfer, Karl & Fuess, Roland & Paraschiv, Florentina, 2015. "Multivariate Dynamic Copula Models: Parameter Estimation and Forecast Evaluation," Working Papers on Finance 1513, University of St. Gallen, School of Finance.
    13. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    14. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    15. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    16. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
    17. Bartels, Mariana & Ziegelmann, Flavio A., 2016. "Market risk forecasting for high dimensional portfolios via factor copulas with GAS dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 66-79.
    18. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    19. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    20. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:523-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.