IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v78y2010i1p395-410.html
   My bibliography  Save this article

Copulas and Temporal Dependence

Author

Listed:
  • Brendan K. Beare

Abstract

An emerging literature in time series econometrics concerns the modeling of potentially nonlinear temporal dependence in stationary Markov chains using copula functions. We obtain sufficient conditions for a geometric rate of mixing in models of this kind. Geometric β-mixing is established under a rather strong sufficient condition that rules out asymmetry and tail dependence in the copula function. Geometric ρ-mixing is obtained under a weaker condition that permits both asymmetry and tail dependence. We verify one or both of these conditions for a range of parametric copula functions that are popular in applied work. Copyright 2010 The Econometric Society.

Suggested Citation

  • Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
  • Handle: RePEc:ecm:emetrp:v:78:y:2010:i:1:p:395-410
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA8152
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    2. McCausland, William J., 2007. "Time reversibility of stationary regular finite-state Markov chains," Journal of Econometrics, Elsevier, vol. 136(1), pages 303-318, January.
    3. Chen, Xiaohong & Hansen, Lars Peter & Carrasco, Marine, 2010. "Nonlinearity and temporal dependence," Journal of Econometrics, Elsevier, vol. 155(2), pages 155-169, April.
    4. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    5. Andrew J. Patton, 2008. "Copula-Based Models for Financial Time Series," Economics Series Working Papers 2008fe21, University of Oxford, Department of Economics.
    6. Rustam Ibragimov, 2005. "Copula-Based Dependence Characterizations and Modeling for Time Series," Harvard Institute of Economic Research Working Papers 2094, Harvard - Institute of Economic Research.
    7. Lorraine Dearden & Emla Fitzsimons & Alissa Goodman & Greg Kaplan, 2008. "Higher Education Funding Reforms in England: The Distributional Effects and the Shifting Balance of Costs," Economic Journal, Royal Economic Society, vol. 118(526), pages 100-125, February.
    8. Brendan K. Beare, 2007. "A New Mixing Condition," Economics Series Working Papers 348, University of Oxford, Department of Economics.
    9. P. Gagliardini & C. Gourieroux, 2008. "Duration time‐series models with proportional hazard," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 74-124, January.
    10. Gagliardini, Patrick & Gourieroux, Christian, 2007. "An efficient nonparametric estimator for models with nonlinear dependence," Journal of Econometrics, Elsevier, vol. 137(1), pages 189-229, March.
    11. Arcones, Miguel A., 1995. "On the central limit theorem for U-statistics under absolute regularity," Statistics & Probability Letters, Elsevier, vol. 24(3), pages 245-249, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    2. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    3. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    4. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    5. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.
    6. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    7. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    8. Romera, Rosario & Molanes, Elisa M., 2008. "Copulas in finance and insurance," DES - Working Papers. Statistics and Econometrics. WS ws086321, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Longla, Martial & Peligrad, Magda, 2012. "Some aspects of modeling dependence in copula-based Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 234-240.
    10. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    11. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    12. Demian Pouzo, 2015. "On the Non-Asymptotic Properties of Regularized M-estimators," Papers 1512.06290, arXiv.org, revised Oct 2016.
    13. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    14. Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
    15. Pál Rakonczai & László Márkus & András Zempléni, 2012. "Autocopulas: Investigating the Interdependence Structure of Stationary Time Series," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 149-167, March.
    16. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
    17. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
    18. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    19. Timothy Christensen, 2014. "Nonparametric Stochastic Discount Factor Decomposition," Papers 1412.4428, arXiv.org, revised May 2017.
    20. Kristensen, Dennis, 2010. "Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models," Journal of Econometrics, Elsevier, vol. 156(2), pages 239-259, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:78:y:2010:i:1:p:395-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.