IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v208y2019i1p141-159.html
   My bibliography  Save this article

A unified test for predictability of asset returns regardless of properties of predicting variables

Author

Listed:
  • Liu, Xiaohui
  • Yang, Bingduo
  • Cai, Zongwu
  • Peng, Liang

Abstract

Some unified tests have been proposed recently in the literature for testing predictability of asset returns based on a simple linear predictive regression model, which has a drawback that predicted variable cannot be stationary if the predicting variable is nonstationary. To solve this issue, this paper includes the difference of the predicting variable into the simple linear predictive regression. Furthermore, a unified empirical likelihood inference is developed to test the predictability regardless of the properties of the predicting variable. A simulation study is conducted to confirm the efficiency of the proposed methods before applying to a real example.

Suggested Citation

  • Liu, Xiaohui & Yang, Bingduo & Cai, Zongwu & Peng, Liang, 2019. "A unified test for predictability of asset returns regardless of properties of predicting variables," Journal of Econometrics, Elsevier, vol. 208(1), pages 141-159.
  • Handle: RePEc:eee:econom:v:208:y:2019:i:1:p:141-159
    DOI: 10.1016/j.jeconom.2018.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440761830174X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2018.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Zongwu & Wang, Yunfei, 2014. "Testing predictive regression models with nonstationary regressors," Journal of Econometrics, Elsevier, vol. 178(P1), pages 4-14.
    2. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    3. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    4. Fukang Zhu & Zongwu Cai & Liang Peng, 2014. "Predictive regressions for macroeconomic data," Papers 1404.7642, arXiv.org.
    5. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    6. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    7. Willa W. Chen & Rohit S. Deo & Yanping Yi, 2013. "Uniform Inference in Predictive Regression Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 525-533, October.
    8. Yakov Amihud & Clifford M. Hurvich & Yi Wang, 2009. "Multiple-Predictor Regressions: Hypothesis Testing," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 413-434, January.
    9. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    10. Ted Juhl, 2014. "A Nonparametric Test of the Predictive Regression Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 387-394, July.
    11. Cai, Zongwu & Wang, Yunfei & Wang, Yonggang, 2015. "Testing Instability In A Predictive Regression Model With Nonstationary Regressors," Econometric Theory, Cambridge University Press, vol. 31(5), pages 953-980, October.
    12. Chenxue Li & Deyuan Li & Liang Peng, 2017. "Uniform Test for Predictive Regression With AR Errors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 29-39, January.
    13. Chen, Willa W. & Deo, Rohit S., 2009. "Bias Reduction And Likelihood-Based Almost Exactly Sized Hypothesis Testing In Predictive Regressions Using The Restricted Likelihood," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1143-1179, October.
    14. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    15. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    16. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.
    2. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    3. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    4. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    5. Serna, Gregorio, 2023. "On the predictive ability of conditional market skewness," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 186-191.
    6. Liu, Guannan & Yao, Shuang, 2020. "A robust test for predictability with unknown persistence," Economics Letters, Elsevier, vol. 189(C).
    7. Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.
    8. Atance, David & Serna, Gregorio, 2024. "Time-varying expected returns, conditional skewness and Bitcoin return predictability," The Quarterly Review of Economics and Finance, Elsevier, vol. 96(C).
    9. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingduo Yang & Xiaohui Liu & Liang Peng & Zongwu Cai, 2018. "Unified Tests for a Dynamic Predictive Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201808, University of Kansas, Department of Economics, revised Sep 2018.
    2. Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
    3. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    5. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    6. Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    8. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    9. Peter C.B. Phillips & Ye Chen, "undated". "Restricted Likelihood Ratio Tests in Predictive Regression," Cowles Foundation Discussion Papers 1968, Cowles Foundation for Research in Economics, Yale University.
    10. Ren, Yu & Tu, Yundong & Yi, Yanping, 2019. "Balanced predictive regressions," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 118-142.
    11. Yijie Fei & Yiu Lim Lui & Jun Yu, 2024. "Testing Predictability in the Presence of Persistent Errors," Working Papers 202401, University of Macau, Faculty of Business Administration.
    12. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
    13. Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.
    14. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    15. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
    16. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    17. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "International stock return predictability: Evidence from new statistical tests," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.
    18. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    20. Rustam Ibragimov & Jihyun Kim & Anton Skrobotov, 2020. "New robust inference for predictive regressions," Papers 2006.01191, arXiv.org, revised Mar 2023.

    More about this item

    Keywords

    Empirical likelihood; Predictive regression; Weighted score;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:208:y:2019:i:1:p:141-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.