IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v96y2024ics1062976924000747.html
   My bibliography  Save this article

Time-varying expected returns, conditional skewness and Bitcoin return predictability

Author

Listed:
  • Atance, David
  • Serna, Gregorio

Abstract

We employ a GARCH-type model to jointly estimate returns, conditional variance and skewness and show that conditional skewness outperforms sample skewness and conditional and sample variance in predicting future Bitcoin returns. Interestingly, the results show that the relationship between conditional skewness and future Bitcoin returns is different depending on the sample period. In the first subsample (2018–2020), a period of relative calm in the Bitcoin market, the relationship is negative, which is in line with that found in the literature. However, in the second subsample (2021–2022), a period of major turmoil in the Bitcoin market, the relationship is positive, which is consistent with that found in previous papers on the relationship between conditional market skewness and future index returns during crisis periods. Based on these results, a dynamic buy and sell strategy of buying or selling Bitcoin based on the estimated conditional skewness is proposed. This dynamic strategy outperforms a static buy-and-hold strategy. The profitability of this strategy can be viewed as the reward that investors demand for bearing the risk associated with the changing conditions in the cryptocurrency market that generate time-varying expected returns.

Suggested Citation

  • Atance, David & Serna, Gregorio, 2024. "Time-varying expected returns, conditional skewness and Bitcoin return predictability," The Quarterly Review of Economics and Finance, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:quaeco:v:96:y:2024:i:c:s1062976924000747
    DOI: 10.1016/j.qref.2024.101868
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976924000747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2024.101868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serna, Gregorio, 2023. "On the predictive ability of conditional market skewness," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 186-191.
    2. Jondeau, Eric & Zhang, Qunzi & Zhu, Xiaoneng, 2019. "Average skewness matters," Journal of Financial Economics, Elsevier, vol. 134(1), pages 29-47.
    3. Brian Boyer & Todd Mitton & Keith Vorkink, 2010. "Expected Idiosyncratic Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 169-202, January.
    4. Ahmed, Walid M.A. & Al Mafrachi, Mustafa, 2021. "Do higher-order realized moments matter for cryptocurrency returns?," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 483-499.
    5. Kraus, Alan & Litzenberger, Robert H, 1976. "Skewness Preference and the Valuation of Risk Assets," Journal of Finance, American Finance Association, vol. 31(4), pages 1085-1100, September.
    6. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    7. Scott, Robert C & Horvath, Philip A, 1980. "On the Direction of Preference for Moments of Higher Order Than the Variance," Journal of Finance, American Finance Association, vol. 35(4), pages 915-919, September.
    8. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    9. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2020. "Analytic solution to the portfolio optimization problem in a mean-variance-skewness model," The European Journal of Finance, Taylor & Francis Journals, vol. 26(2-3), pages 165-178, February.
    10. Kane, Alex, 1982. "Skewness Preference and Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(1), pages 15-25, March.
    11. Jennifer Conrad & Robert F. Dittmar & Eric Ghysels, 2013. "Ex Ante Skewness and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 85-124, February.
    12. Liu, Xiaohui & Yang, Bingduo & Cai, Zongwu & Peng, Liang, 2019. "A unified test for predictability of asset returns regardless of properties of predicting variables," Journal of Econometrics, Elsevier, vol. 208(1), pages 141-159.
    13. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    14. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    15. Fred D. Arditti, 1967. "Risk And The Required Return On Equity," Journal of Finance, American Finance Association, vol. 22(1), pages 19-36, March.
    16. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
    17. Joseph Golec & Maurry Tamarkin, 1998. "Bettors Love Skewness, Not Risk, at the Horse Track," Journal of Political Economy, University of Chicago Press, vol. 106(1), pages 205-225, February.
    18. Levich, Richard & Conlon, Thomas & Potì, Valerio, 2019. "Measuring excess-predictability of asset returns and market efficiency over time," Economics Letters, Elsevier, vol. 175(C), pages 92-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serna, Gregorio, 2023. "On the predictive ability of conditional market skewness," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 186-191.
    2. Yigit Atilgan & K. Ozgur Demirtas & A. Doruk Gunaydin & Imra Kirli, 2023. "Average skewness in global equity markets," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 245-271, June.
    3. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, October.
    4. Jondeau, Eric & Zhang, Qunzi & Zhu, Xiaoneng, 2019. "Average skewness matters," Journal of Financial Economics, Elsevier, vol. 134(1), pages 29-47.
    5. Eric Jondeau & Xuewu Wang & Zhipeng Yan & Qunzi Zhang, 2020. "Skewness and index futures return," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1648-1664, November.
    6. Dai, Yiming & Jiang, Yuexiang & Long, Huaigang & Wang, Hui & Zaremba, Adam, 2023. "Does realized skewness predict the cross-section of Chinese stock returns?," Finance Research Letters, Elsevier, vol. 58(PB).
    7. Xu, Zhongxiang & Li, Xiafei & Chevapatrakul, Thanaset & Gao, Ning, 2022. "Default risk, macroeconomic conditions, and the market skewness risk premium," Journal of International Money and Finance, Elsevier, vol. 127(C).
    8. Kinateder, Harald & Papavassiliou, Vassilios G., 2019. "Sovereign bond return prediction with realized higher moments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 53-73.
    9. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    10. Zhong, Angel & Gray, Philip, 2016. "The MAX effect: An exploration of risk and mispricing explanations," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 76-90.
    11. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    12. Byun, Suk-Joon & Kim, Da-Hea, 2016. "Gambling preference and individual equity option returns," Journal of Financial Economics, Elsevier, vol. 122(1), pages 155-174.
    13. Matteo Benuzzi & Matteo Ploner, 2024. "Skewness-seeking behavior and financial investments," Annals of Finance, Springer, vol. 20(1), pages 129-165, March.
    14. Lambert, M. & Hübner, G., 2013. "Comoment risk and stock returns," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 191-205.
    15. Sévi, Benoît, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Economic Modelling, Elsevier, vol. 31(C), pages 189-197.
    16. Zhen, Fang, 2020. "Asymmetric signals and skewness," Economic Modelling, Elsevier, vol. 90(C), pages 32-42.
    17. Huang, Tao & Li, Junye, 2019. "Option-Implied variance asymmetry and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 21-36.
    18. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    19. Jozef Barunik & Josef Kurka, 2021. "Risks of heterogeneously persistent higher moments," Papers 2104.04264, arXiv.org, revised Mar 2024.
    20. Aretz, Kevin & Eser Arisoy, Y., 2023. "The Pricing of Skewness Over Different Return Horizons," Journal of Banking & Finance, Elsevier, vol. 148(C).

    More about this item

    Keywords

    Bitcoin return predictions; GARCHS models; Conditional skewness; Sample skewness;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:96:y:2024:i:c:s1062976924000747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.