A New Robust Inference for Predictive Quantile Regression
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Cai, Zongwu & Wang, Yunfei, 2014. "Testing predictive regression models with nonstationary regressors," Journal of Econometrics, Elsevier, vol. 178(P1), pages 4-14.
- Sekkel, Rodrigo, 2011. "International evidence on bond risk premia," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 174-181, January.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011.
"Evaluating Value-at-Risk Models via Quantile Regression,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
- Gaglianone, Wagner Piazza & Linton, Oliver & Lima, Luiz Renato Regis de Oliveira, 2008. "Evaluating Value-at-Risk models via Quantile regressions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 679, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
- Wagner P. Gaglianone & Luiz Renato Lima & Oliver Linton, 2008. "Evaluating Value-at-Risk Models via Quantile Regressions," Working Papers Series 161, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel, 2009. "Evaluating Value-at-Risk models via Quantile Regression," UC3M Working papers. Economics we094625, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Andrew Ang & Geert Bekaert, 2007.
"Stock Return Predictability: Is it There?,"
The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
- Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
- Bauer, Dietmar & Maynard, Alex, 2012. "Persistence-robust surplus-lag Granger causality testing," Journal of Econometrics, Elsevier, vol. 169(2), pages 293-300.
- Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
- Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
- Peter C. B. Phillips, 2015. "Pitfalls and Possibilities in Predictive Regression," Cowles Foundation Discussion Papers 2003, Cowles Foundation for Research in Economics, Yale University.
- Xiao, Zhijie, 2009.
"Quantile cointegrating regression,"
Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
- Zhijie Xiao, 2009. "Quantile Cointegrating Regression," Boston College Working Papers in Economics 708, Boston College Department of Economics.
- Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015.
"Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1079-1134, November.
- Peter C.B. Phillips & Shu-Ping Shi & Jun Yu, 2013. "Testing for Multiple Bubbles: Limit Theory of Real Time Detectors," Cowles Foundation Discussion Papers 1915, Cowles Foundation for Research in Economics, Yale University.
- Peter C. B. Phillips & Shu-Ping Shi & Jun Yu, 2013. "Testing for Multiple Bubbles 2: Limit Theory of Real Time Detectors," Working Papers 05-2013, Singapore Management University, School of Economics.
- Campbell, John Y. & Yogo, Motohiro, 2006.
"Efficient tests of stock return predictability,"
Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
- John Y. Campbell & Motohiro Yogo, 2002. "Efficient Tests of Stock Return Predictability," Harvard Institute of Economic Research Working Papers 1972, Harvard - Institute of Economic Research.
- Campbell, John & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Scholarly Articles 3122601, Harvard University Department of Economics.
- John Y. Campbell & Motohiro Yogo, 2003. "Efficient Tests of Stock Return Predictability," NBER Working Papers 10026, National Bureau of Economic Research, Inc.
- Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
- Lee, Ji Hyung, 2016.
"Predictive quantile regression with persistent covariates: IVX-QR approach,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
- Lee, JiHyung, 2015. "Predictive quantile regression with persistent covariates: IVX-QR approach," MPRA Paper 65150, University Library of Munich, Germany.
- Phillips, Peter C.B. & Lee, Ji Hyung, 2016. "Robust econometric inference with mixed integrated and mildly explosive regressors," Journal of Econometrics, Elsevier, vol. 192(2), pages 433-450.
- Phillips, Peter C.B., 2014.
"Optimal estimation of cointegrated systems with irrelevant instruments,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
- Peter C. B. Phillips, 2006. "Optimal Estimation of Cointegrated Systems with Irrelevant Instruments," Cowles Foundation Discussion Papers 1547, Cowles Foundation for Research in Economics, Yale University.
- Willa W. Chen & Rohit S. Deo & Yanping Yi, 2013. "Uniform Inference in Predictive Regression Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 525-533, October.
- Yakov Amihud & Clifford M. Hurvich & Yi Wang, 2009. "Multiple-Predictor Regressions: Hypothesis Testing," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 413-434, January.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:229-241 is not listed on IDEAS
- Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
- Michael Jansson & Marcelo J. Moreira, 2006.
"Optimal Inference in Regression Models with Nearly Integrated Regressors,"
Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
- Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Harvard Institute of Economic Research Working Papers 2047, Harvard - Institute of Economic Research.
- Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," NBER Technical Working Papers 0303, National Bureau of Economic Research, Inc.
- Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
- Cai, Zongwu & Xu, Xiaoping, 2009.
"Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
- Cai, Zongwu & Xu, Xiaoping, 2008. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1595-1608.
- Xiaoping Xu & Zongwu Cai, 2013. "Nonparametric Quantile Estimations For Dynamic Smooth Coefficient Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Bingduo Yang & Xiaohui Liu & Liang Peng & Zongwu Cai, 2018. "Unified Tests for a Dynamic Predictive Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201808, University of Kansas, Department of Economics, revised Sep 2018.
- Peter C. B. Phillips, 2015. "Halbert White Jr. Memorial JFEC Lecture: Pitfalls and Possibilities in Predictive Regression†," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 521-555.
- Chen, Willa W. & Deo, Rohit S., 2009. "Bias Reduction And Likelihood-Based Almost Exactly Sized Hypothesis Testing In Predictive Regressions Using The Restricted Likelihood," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1143-1179, October.
- Bingduo Yang & Wei Long & Liang Peng & Zongwu Cai, 2020. "Testing the Predictability of U.S. Housing Price Index Returns Based on an IVX-AR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1598-1619, December.
- Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Liu, Xiaohui & Yang, Bingduo & Cai, Zongwu & Peng, Liang, 2019. "A unified test for predictability of asset returns regardless of properties of predicting variables," Journal of Econometrics, Elsevier, vol. 208(1), pages 141-159.
- Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
- Fan, Rui & Lee, Ji Hyung, 2019. "Predictive quantile regressions under persistence and conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(1), pages 261-280.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Liu, Yanbo & Phillips, Peter C.B., 2023.
"Robust inference with stochastic local unit root regressors in predictive regressions,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
- Yanbo Liu & Peter C.B. Phillips, 2021. "Robust Inference with Stochastic Local Unit Root Regressors in Predictive Regressions," Cowles Foundation Discussion Papers 2305, Cowles Foundation for Research in Economics, Yale University.
- Fukang Zhu & Mengya Liu & Shiqing Ling & Zongwu Cai, 2020. "Testing for Structural Change of Predictive Regression Model to Threshold Predictive Regression Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202021, University of Kansas, Department of Economics, revised Dec 2020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
- Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023.
"Transformed regression-based long-horizon predictability tests,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Demetrescu, Matei & Rodrigues, Paulo MM & Taylor, AM Robert, 2022. "Transformed Regression-based Long-Horizon Predictability Tests," Essex Finance Centre Working Papers 30620, University of Essex, Essex Business School.
- Demetrescu, Matei & Rodrigues, Paulo M.M., 2022.
"Residual-augmented IVX predictive regression,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
- Paulo M.M. Rodrigues & Matei Demetrescu, 2016. "Residual-augmented IVX predictive regression," Working Papers w201605, Banco de Portugal, Economics and Research Department.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022.
"Testing for episodic predictability in stock returns,"
Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo MM & Taylor, AM Robert, 2019. "Testing for Episodic Predictability in Stock Returns," Essex Finance Centre Working Papers 24137, University of Essex, Essex Business School.
- Paulo M.M. Rodrigues & Matei Demetrescu, 2019. "Testing for Episodic Predictability in Stock Returns," Working Papers w201906, Banco de Portugal, Economics and Research Department.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023.
"Extensions to IVX methods of inference for return predictability,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Paulo M.M. Rodrigues & Matei Demetrescu, 2021. "Extensions to IVX methods of inference for return predictability," Working Papers w202104, Banco de Portugal, Economics and Research Department.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo MM & Taylor, AM Robert, 2022. "Extensions to IVX Methods of Inference for Return Predictability," Essex Finance Centre Working Papers 29779, University of Essex, Essex Business School.
- Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
- Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
- Liu, Yanbo & Phillips, Peter C.B., 2023.
"Robust inference with stochastic local unit root regressors in predictive regressions,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
- Yanbo Liu & Peter C.B. Phillips, 2021. "Robust Inference with Stochastic Local Unit Root Regressors in Predictive Regressions," Cowles Foundation Discussion Papers 2305, Cowles Foundation for Research in Economics, Yale University.
- Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
- Yang, Bingduo & Long, Wei & Yang, Zihui, 2022. "Testing predictability of stock returns under possible bubbles," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 246-260.
- Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.
- Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.
- Bingduo Yang & Xiaohui Liu & Liang Peng & Zongwu Cai, 2018. "Unified Tests for a Dynamic Predictive Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201808, University of Kansas, Department of Economics, revised Sep 2018.
- Andersen, Torben G. & Varneskov, Rasmus T., 2021.
"Consistent inference for predictive regressions in persistent economic systems,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Consistent Inference for Predictive Regressions in Persistent Economic Systems," NBER Working Papers 28568, National Bureau of Economic Research, Inc.
- Ke-Li Xu & Junjie Guo, 2021. "A New Test for Multiple Predictive Regression," CAEPR Working Papers 2022-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Narayan, Seema & Smyth, Russell, 2015.
"The financial econometrics of price discovery and predictability,"
International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
- Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
- Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
- Lee, Ji Hyung, 2016.
"Predictive quantile regression with persistent covariates: IVX-QR approach,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
- Lee, JiHyung, 2015. "Predictive quantile regression with persistent covariates: IVX-QR approach," MPRA Paper 65150, University Library of Munich, Germany.
- repec:grz:wpaper:2012-02 is not listed on IDEAS
- Park, Dojoon & Hahn, Jaehoon & Eom, Young Ho, 2024. "Predicting the equity premium with financial ratios: A comprehensive look over a long period in Korea," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
- Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
More about this item
Keywords
Auxiliary regressor; Highly persistent predictor; Multiple regression; Predictive quantile regression; Robust inference; Weighted estimator;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CNA-2020-02-24 (China)
- NEP-ECM-2020-02-24 (Econometrics)
- NEP-ETS-2020-02-24 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kan:wpaper:202002. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Zongwu Cai (email available below). General contact details of provider: https://edirc.repec.org/data/deuksus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.