IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v32y2014i3p387-394.html
   My bibliography  Save this article

A Nonparametric Test of the Predictive Regression Model

Author

Listed:
  • Ted Juhl

Abstract

This article considers testing the significance of a regressor with a near unit root in a predictive regression model. The procedures discussed in this article are nonparametric, so one can test the significance of a regressor without specifying a functional form. The results are used to test the null hypothesis that the entire function takes the value of zero. We show that the standardized test has a normal distribution regardless of whether there is a near unit root in the regressor. This is in contrast to tests based on linear regression for this model where tests have a nonstandard limiting distribution that depends on nuisance parameters. Our results have practical implications in testing the significance of a regressor since there is no need to conduct pretests for a unit root in the regressor and the same procedure can be used if the regressor has a unit root or not. A Monte Carlo experiment explores the performance of the test for various levels of persistence of the regressors and for various linear and nonlinear alternatives. The test has superior performance against certain nonlinear alternatives. An application of the test applied to stock returns shows how the test can improve inference about predictability.

Suggested Citation

  • Ted Juhl, 2014. "A Nonparametric Test of the Predictive Regression Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 387-394, July.
  • Handle: RePEc:taf:jnlbes:v:32:y:2014:i:3:p:387-394
    DOI: 10.1080/07350015.2014.887013
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2014.887013
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2014.887013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Liu, Xiaohui & Yang, Bingduo & Cai, Zongwu & Peng, Liang, 2019. "A unified test for predictability of asset returns regardless of properties of predicting variables," Journal of Econometrics, Elsevier, vol. 208(1), pages 141-159.
    3. Jose Olmo, 2023. "A nonparametric predictive regression model using partitioning estimators based on Taylor expansions," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 294-318, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:32:y:2014:i:3:p:387-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.