IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v496y2024ics0304380024002382.html
   My bibliography  Save this article

Useful properties of phenomenological-based models

Author

Listed:
  • Aguirre-Zapata, Estefania
  • Lema-Perez, Laura
  • Gomez-Echavarria, Lina
  • Botero-Castro, Hector
  • Maya, Juan C.
  • Chejne, Farid
  • Alvarez, Hernan

Abstract

This work compiles the conceptual and practical proposals of various research groups regarding interesting properties of mathematical models. Although different types of mathematical models are mentioned, phenomenological-based semi-physical models (PBSM) are the main focus of this paper. The partitioning of the process to be modeled, the scalability of the model, and the interpretability of its parameters are presented as important properties of the model that help to understand and use the mathematical model. The use of these properties is illustrated with examples, providing the respective bibliographical reference where an expanded presentation of each example can be reviewed. The importance of each model property presented is explained from the inherent condition of the model as a mathematical object and from the expectation of the final users of the model. The confidence in the model is increased when the user knows how the model is obtained. These properties provide valuable information to the end use of the model. Therefore, the modeler must understand and apply this knowledge during model deduction and write, in the model report, how the mentioned properties were tested.

Suggested Citation

  • Aguirre-Zapata, Estefania & Lema-Perez, Laura & Gomez-Echavarria, Lina & Botero-Castro, Hector & Maya, Juan C. & Chejne, Farid & Alvarez, Hernan, 2024. "Useful properties of phenomenological-based models," Ecological Modelling, Elsevier, vol. 496(C).
  • Handle: RePEc:eee:ecomod:v:496:y:2024:i:c:s0304380024002382
    DOI: 10.1016/j.ecolmodel.2024.110850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).
    2. Aguirre-Zapata, Estefania & Morales, Humberto & Dagatti, Carla V. & di Sciascio, Fernando & Amicarelli, Adriana N., 2022. "Semi physical growth model of Lobesia botrana under laboratory conditions for Argentina’s Cuyo region," Ecological Modelling, Elsevier, vol. 464(C).
    3. Quang Hung Nguyen & Hai-Bang Ly & Lanh Si Ho & Nadhir Al-Ansari & Hiep Van Le & Van Quan Tran & Indra Prakash & Binh Thai Pham, 2021. "Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, February.
    4. Gilioli, Gianni & Pasquali, Sara & Marchesini, Enrico, 2016. "A modelling framework for pest population dynamics and management: An application to the grape berry moth," Ecological Modelling, Elsevier, vol. 320(C), pages 348-357.
    5. Wang, Hsiao-Hsuan & Van Voorn, George & Grant, William E. & Zare, Fateme & Giupponi, Carlo & Steinmann, Patrick & Müller, Birgit & Elsawah, Sondoss & van Delden, Hedwig & Athanasiadis, Ioannis N. & Su, 2023. "Scale decisions and good practices in socio-environmental systems modelling: Guidance and documentation during problem scoping and model formulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5, pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).
    2. Klagkou, Evridiki & Gergs, Andre & Baden, Christian U. & Lika, Konstadia, 2024. "Dynamic Energy Budget approach for modeling growth and reproduction of Neotropical stink bugs," Ecological Modelling, Elsevier, vol. 493(C).
    3. Kim, Jongkyum & Lim, Jee-Hae & Yoon, Kyunghee, 2022. "How do the content, format, and tone of Twitter-based corporate disclosure vary depending on earnings performance?," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).
    4. Pasquali, Sara, 2021. "A stage structured demographic model with “no-regression” growth: The case of constant development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Zhang, Jianhong & van Witteloostuijn, Arjen & Zhou, Chaohong & Zhou, Shengyang, 2024. "Cross-border acquisition completion by emerging market MNEs revisited: Inductive evidence from a machine learning analysis," Journal of World Business, Elsevier, vol. 59(2).
    6. Rossini, Luca & Contarini, Mario & Severini, Maurizio & Speranza, Stefano, 2020. "Reformulation of the Distributed Delay Model to describe insect pest populations using count variables," Ecological Modelling, Elsevier, vol. 436(C).
    7. Matthew Oyeleye & Tianhua Chen & Sofya Titarenko & Grigoris Antoniou, 2022. "A Predictive Analysis of Heart Rates Using Machine Learning Techniques," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
    8. Xinguo Miao & Lei Liu & Zhiyong Wang & Xiaoming Chen, 2024. "Improved Error-Based Ensemble Learning Model for Compressor Performance Parameter Prediction," Energies, MDPI, vol. 17(9), pages 1-12, April.
    9. Mohamed Zul Fadhli Khairuddin & Puat Lu Hui & Khairunnisa Hasikin & Nasrul Anuar Abd Razak & Khin Wee Lai & Ahmad Shakir Mohd Saudi & Siti Salwa Ibrahim, 2022. "Occupational Injury Risk Mitigation: Machine Learning Approach and Feature Optimization for Smart Workplace Surveillance," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    10. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.
    11. Wu, Chen-Fa & Wang, Hsiao-Hsuan & Chen, Szu-Hung & Trac, Luu Van Thong, 2024. "Assessing the efficiency of bird habitat conservation strategies in farmland ecosystems," Ecological Modelling, Elsevier, vol. 492(C).
    12. Celal Cakiroglu & Gebrail Bekdaş & Sanghun Kim & Zong Woo Geem, 2022. "Explainable Ensemble Learning Models for the Rheological Properties of Self-Compacting Concrete," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    13. Pasquali, Sara & Trivellato, Barbara, 2023. "A stage structured demographic model with “no-regression” growth: The case of temperature-dependent development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    14. Neta, Ayana & Gafni, Roni & Elias, Hilit & Bar-Shmuel, Nitsan & Shaltiel-Harpaz, Liora & Morin, Efrat & Morin, Shai, 2021. "Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models," Ecological Modelling, Elsevier, vol. 440(C).
    15. Madhusmita Das & Rasmita Dash & Sambit Kumar Mishra, 2023. "Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    16. Pasquali, S. & Soresina, C. & Marchesini, E., 2022. "Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana," Ecological Modelling, Elsevier, vol. 464(C).
    17. Castex, V. & García de Cortázar-Atauri, I. & Calanca, P. & Beniston, M. & Moreau, J., 2020. "Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies," Ecological Modelling, Elsevier, vol. 420(C).
    18. Rossini, Luca & Severini, Maurizio & Contarini, Mario & Speranza, Stefano, 2019. "A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    19. Rossini, Luca & Bono Rosselló, Nicolás & Speranza, Stefano & Garone, Emanuele, 2021. "A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii," Ecological Modelling, Elsevier, vol. 456(C).
    20. Van Quan Tran, 2023. "Using Artificial Intelligence Approach for Investigating and Predicting Yield Stress of Cemented Paste Backfill," Sustainability, MDPI, vol. 15(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:496:y:2024:i:c:s0304380024002382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.