IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i4p2417-d753520.html
   My bibliography  Save this article

A Predictive Analysis of Heart Rates Using Machine Learning Techniques

Author

Listed:
  • Matthew Oyeleye

    (Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Tianhua Chen

    (Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Sofya Titarenko

    (Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Grigoris Antoniou

    (Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

Abstract

Heart disease, caused by low heart rate, is one of the most significant causes of mortality in the world today. Therefore, it is critical to monitor heart health by identifying the deviation in the heart rate very early, which makes it easier to detect and manage the heart’s function irregularities at a very early stage. The fast-growing use of advanced technology such as the Internet of Things (IoT), wearable monitoring systems and artificial intelligence (AI) in the healthcare systems has continued to play a vital role in the analysis of huge amounts of health-based data for early and accurate disease detection and diagnosis for personalized treatment and prognosis evaluation. It is then important to analyze the effectiveness of using data analytics and machine learning to monitor and predict heart rates using wearable device (accelerometer)-generated data. Hence, in this study, we explored a number of powerful data-driven models including the autoregressive integrated moving average (ARIMA) model, linear regression, support vector regression (SVR), k-nearest neighbor (KNN) regressor, decision tree regressor, random forest regressor and long short-term memory (LSTM) recurrent neural network algorithm for the analysis of accelerometer data to make future HR predictions from the accelerometer’s univariant HR time-series data from healthy people. The performances of the models were evaluated under different durations. Evaluated on a very recently created data set, our experimental results demonstrate the effectiveness of using an ARIMA model with a walk-forward validation and linear regression for predicting heart rate under all durations and other models for durations longer than 1 min. The results of this study show that employing these data analytics techniques can be used to predict future HR more accurately using accelerometers.

Suggested Citation

  • Matthew Oyeleye & Tianhua Chen & Sofya Titarenko & Grigoris Antoniou, 2022. "A Predictive Analysis of Heart Rates Using Machine Learning Techniques," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2417-:d:753520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/4/2417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/4/2417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    2. Quang Hung Nguyen & Hai-Bang Ly & Lanh Si Ho & Nadhir Al-Ansari & Hiep Van Le & Van Quan Tran & Indra Prakash & Binh Thai Pham, 2021. "Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, February.
    3. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Vl. Bitkina & Jaehyun Park & Jungyoon Kim, 2022. "Modeling Sleep Quality Depending on Objective Actigraphic Indicators Based on Machine Learning Methods," IJERPH, MDPI, vol. 19(16), pages 1-14, August.
    2. Elisabeth Maria Balint & Peter Angerer & Harald Guendel & Birgitt Marten-Mittag & Marc N. Jarczok, 2022. "Stress Management Intervention for Leaders Increases Nighttime SDANN: Results from a Randomized Controlled Trial," IJERPH, MDPI, vol. 19(7), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Daniya Tlegenova, 2015. "Forecasting Exchange Rates Using Time Series Analysis: The sample of the currency of Kazakhstan," Papers 1508.07534, arXiv.org.
    3. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    4. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    5. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    6. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    7. Kim, Jongkyum & Lim, Jee-Hae & Yoon, Kyunghee, 2022. "How do the content, format, and tone of Twitter-based corporate disclosure vary depending on earnings performance?," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).
    8. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    9. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    10. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    12. Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
    13. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    14. Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
    15. Zhang, Jianhong & van Witteloostuijn, Arjen & Zhou, Chaohong & Zhou, Shengyang, 2024. "Cross-border acquisition completion by emerging market MNEs revisited: Inductive evidence from a machine learning analysis," Journal of World Business, Elsevier, vol. 59(2).
    16. Leigh, W. & Paz, M. & Purvis, R., 2002. "An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE composite index," Omega, Elsevier, vol. 30(2), pages 69-76, April.
    17. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy," Energies, MDPI, vol. 11(8), pages 1-18, August.
    18. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    19. Xingcai Zhou & Jiangyan Wang, 2021. "Panel semiparametric quantile regression neural network for electricity consumption forecasting," Papers 2103.00711, arXiv.org.
    20. Ahmet Goncu & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2019. "Forecasting Daily Residential Natural Gas Consumption: A Dynamic Temperature Modelling Approach," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 33(1), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2417-:d:753520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.