A Predictive Analysis of Heart Rates Using Machine Learning Techniques
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
- Quang Hung Nguyen & Hai-Bang Ly & Lanh Si Ho & Nadhir Al-Ansari & Hiep Van Le & Van Quan Tran & Indra Prakash & Binh Thai Pham, 2021. "Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Olga Vl. Bitkina & Jaehyun Park & Jungyoon Kim, 2022. "Modeling Sleep Quality Depending on Objective Actigraphic Indicators Based on Machine Learning Methods," IJERPH, MDPI, vol. 19(16), pages 1-14, August.
- Elisabeth Maria Balint & Peter Angerer & Harald Guendel & Birgitt Marten-Mittag & Marc N. Jarczok, 2022. "Stress Management Intervention for Leaders Increases Nighttime SDANN: Results from a Randomized Controlled Trial," IJERPH, MDPI, vol. 19(7), pages 1-12, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniya Tlegenova, 2015. "Forecasting Exchange Rates Using Time Series Analysis: The sample of the currency of Kazakhstan," Papers 1508.07534, arXiv.org.
- Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
- Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
- Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
- Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
- Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
- Kim, Jongkyum & Lim, Jee-Hae & Yoon, Kyunghee, 2022. "How do the content, format, and tone of Twitter-based corporate disclosure vary depending on earnings performance?," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).
- Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
- Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
- Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
- Dilaver, Zafer & Hunt, Lester C., 2011.
"Turkish aggregate electricity demand: An outlook to 2020,"
Energy, Elsevier, vol. 36(11), pages 6686-6696.
- Zafer Dilaver & Lester C Hunt, 2011. "Turkish Aggregate Electricity Demand: An Outlook to 2020," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 132, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
- Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
- Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
- Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
- Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
- Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
More about this item
Keywords
heart rate; accelerometer; time series; data analytics; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2417-:d:753520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.