IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v456y2021ics0304380021002313.html
   My bibliography  Save this article

A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii

Author

Listed:
  • Rossini, Luca
  • Bono Rosselló, Nicolás
  • Speranza, Stefano
  • Garone, Emanuele

Abstract

This paper introduces a novel general model based on Ordinary Differential Equations (ODEs) which is able to describe the population dynamics of a large class of insect pests. The proposed model is a physiologically-inspired generalization of a number of ad hoc models presented through the years in the literature. Its main feature is that it allows the systematic generation of a population model for a species by simply defining its key features, namely the sex ratio and the development, fertility, and mortality rates. The first part of the paper provides a detailed description of the model and shows that most ODE-based models existing in literature can be obtained as a special case of the proposed model. The second part of the paper shows an application of the model to the spotted wing drosophila Drosophila suzukii, which is a highly relevant pest in agriculture. The biological features of this species, i.e., the sex ratio and the various rates, were retrieved from the existing scientific literature. The obtained model was validated using data from a three-year survey conducted in two experimental fields. Results show that the model describes faithfully the experimental populations, although the simulations were performed completely in open-loop and without any adaptation of the parameters extracted from the existing literature.

Suggested Citation

  • Rossini, Luca & Bono Rosselló, Nicolás & Speranza, Stefano & Garone, Emanuele, 2021. "A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii," Ecological Modelling, Elsevier, vol. 456(C).
  • Handle: RePEc:eee:ecomod:v:456:y:2021:i:c:s0304380021002313
    DOI: 10.1016/j.ecolmodel.2021.109673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilioli, Gianni & Pasquali, Sara & Marchesini, Enrico, 2016. "A modelling framework for pest population dynamics and management: An application to the grape berry moth," Ecological Modelling, Elsevier, vol. 320(C), pages 348-357.
    2. Brunetti, Matteo & Capasso, Vincenzo & Montagna, Matteo & Venturino, Ezio, 2020. "A mathematical model for Xylella fastidiosa epidemics in the Mediterranean regions. Promoting good agronomic practices for their effective control," Ecological Modelling, Elsevier, vol. 432(C).
    3. Rossini, Luca & Contarini, Mario & Severini, Maurizio & Speranza, Stefano, 2020. "Reformulation of the Distributed Delay Model to describe insect pest populations using count variables," Ecological Modelling, Elsevier, vol. 436(C).
    4. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.
    5. Djeumen, I.V. Yatat & Dumont, Y. & Doizy, A. & Couteron, P., 2021. "A minimalistic model of vegetation physiognomies in the savanna biome," Ecological Modelling, Elsevier, vol. 440(C).
    6. Rossini, Luca & Severini, Maurizio & Contarini, Mario & Speranza, Stefano, 2019. "A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pappalardo, Sonia & Villa, María & Santos, Sónia A.P. & Benhadi-Marín, Jacinto & Pereira, José Alberto & Venturino, Ezio, 2021. "A tritrophic interaction model for an olive tree pest, the olive moth — Prays oleae (Bernard)," Ecological Modelling, Elsevier, vol. 462(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossini, Luca & Contarini, Mario & Severini, Maurizio & Speranza, Stefano, 2020. "Reformulation of the Distributed Delay Model to describe insect pest populations using count variables," Ecological Modelling, Elsevier, vol. 436(C).
    2. Pasquali, Sara, 2021. "A stage structured demographic model with “no-regression” growth: The case of constant development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Pasquali, Sara & Trivellato, Barbara, 2023. "A stage structured demographic model with “no-regression” growth: The case of temperature-dependent development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    4. Pasquali, S. & Soresina, C. & Marchesini, E., 2022. "Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana," Ecological Modelling, Elsevier, vol. 464(C).
    5. Kolpas, Allison & Funk, David H. & Jackson, John K. & Sweeney, Bernard W., 2020. "Phenological modeling of the parthenogenetic mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae) in White Clay Creek," Ecological Modelling, Elsevier, vol. 416(C).
    6. Brunetti, Matteo & Capasso, Vincenzo & Montagna, Matteo & Venturino, Ezio, 2020. "A mathematical model for Xylella fastidiosa epidemics in the Mediterranean regions. Promoting good agronomic practices for their effective control," Ecological Modelling, Elsevier, vol. 432(C).
    7. Neta, Ayana & Gafni, Roni & Elias, Hilit & Bar-Shmuel, Nitsan & Shaltiel-Harpaz, Liora & Morin, Efrat & Morin, Shai, 2021. "Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models," Ecological Modelling, Elsevier, vol. 440(C).
    8. Gilioli, Gianni & Simonetto, Anna & Colturato, Michele & Bazarra, Noelia & Fernández, José R. & Naso, Maria Grazia & Donato, Boscia & Bosco, Domenico & Dongiovanni, Crescenza & Maiorano, Andrea & Mosb, 2023. "An eco-epidemiological model supporting rational disease management of Xylella fastidiosa. An application to the outbreak in Apulia (Italy)," Ecological Modelling, Elsevier, vol. 476(C).
    9. Castex, V. & García de Cortázar-Atauri, I. & Calanca, P. & Beniston, M. & Moreau, J., 2020. "Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies," Ecological Modelling, Elsevier, vol. 420(C).
    10. Rossini, Luca & Severini, Maurizio & Contarini, Mario & Speranza, Stefano, 2019. "A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    11. Ali, Hegagi Mohamed & Ameen, Ismail Gad & Gaber, Yasmeen Ahmed, 2024. "The effect of curative and preventive optimal control measures on a fractional order plant disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 496-515.
    12. Francesco Bozzo & Michel Frem & Vincenzo Fucilli & Gianluigi Cardone & Paolo Francesco Garofoli & Stefania Geronimo & Alessandro Petrontino, 2022. "Landscape and Vegetation Patterns Zoning Is a Methodological Tool for Management Costs Implications Due to Xylella fastidiosa Invasion," Land, MDPI, vol. 11(7), pages 1-19, July.
    13. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).
    14. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:456:y:2021:i:c:s0304380021002313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.