IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v464y2022ics0304380021003483.html
   My bibliography  Save this article

Semi physical growth model of Lobesia botrana under laboratory conditions for Argentina’s Cuyo region

Author

Listed:
  • Aguirre-Zapata, Estefania
  • Morales, Humberto
  • Dagatti, Carla V.
  • di Sciascio, Fernando
  • Amicarelli, Adriana N.

Abstract

Lobesia botrana is a quarantine pest from Argentina and other countries in the world. It causes damage to the vine in its different growth stages leading to losses in wine production. To develop pest control strategies based on knowledge of the moth, different mathematical models can be found in specific literature to predict its biological cycle, establish its relationship with environmental variables, describe the voltinism of the pest, among others. Based on the proposed models, it is possible to establish a minimum temperature threshold considering the development of the moth and the number of degrees’ days (DD) that must be accumulated for there to be a change of stage. Many of these models are empirical. They are limited because they do not consider some variables such as growth and mortality rates, also they lack a conceptual basis. This makes that professionals or institutions interested in the development of decision support systems (DSS) may not use them. This also prevents them from being easily extrapolated to other regions of the world. In this work, a semi-physical model based on first principles (FPBSM) is proposed to describe how the different growth stages of the vine moth change quantitatively throughout its normal development time under controlled and specific laboratory conditions for the Cuyo region in Argentina. The proposed model, based on a white box structure, considers important parameters in the development of the moth, such as growth and mortality rates. Opposite to the models reported in the literature, the proposed model is conceptually more simple, easy to calculate or adjust, and Its parameters are interpretable in the model’s application context. The previous characteristics facilitate the proposal model’s use by sectors interested in the development of DSS systems. The reported mathematical model has been validated with experimental data for three different temperature conditions.

Suggested Citation

  • Aguirre-Zapata, Estefania & Morales, Humberto & Dagatti, Carla V. & di Sciascio, Fernando & Amicarelli, Adriana N., 2022. "Semi physical growth model of Lobesia botrana under laboratory conditions for Argentina’s Cuyo region," Ecological Modelling, Elsevier, vol. 464(C).
  • Handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003483
    DOI: 10.1016/j.ecolmodel.2021.109803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castex, V. & García de Cortázar-Atauri, I. & Calanca, P. & Beniston, M. & Moreau, J., 2020. "Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies," Ecological Modelling, Elsevier, vol. 420(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.