IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v464y2022ics0304380021003823.html
   My bibliography  Save this article

Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana

Author

Listed:
  • Pasquali, S.
  • Soresina, C.
  • Marchesini, E.

Abstract

Simulating the population dynamics of a stage-structured population requires the knowledge of development, mortality and fecundity rate functions characterizing the species. In general, development and fecundity can satisfactorily be estimated starting from literature data. Unfortunately, this is often not the case for the mortality function due to the lack of experimental data. To overcome this problem, we estimate the mortality rate function from field data on the abundance of the species. The mortality is expressed as a linear combination of cubic splines and the estimation method allows to determine its coefficients taking into account the observations measurement error. Moreover, the variability in the estimate is quantified using the confidence bands for both mortality and dynamics. The presented method allows obtaining a more flexible shape for the mortality rate functions compared with previous methods applied to the same pest. The method has been applied to the case of Lobesia botrana, the main pest in the European vineyards, with abundance data collected for five consecutive years in an experimental field in the North of Italy. Data collected over three years are used to estimate the mortality and to analyse the variability in the estimate and its effects on the population dynamics, while the other two datasets are used to validate the model simulating the dynamics using the estimated mortality.

Suggested Citation

  • Pasquali, S. & Soresina, C. & Marchesini, E., 2022. "Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana," Ecological Modelling, Elsevier, vol. 464(C).
  • Handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003823
    DOI: 10.1016/j.ecolmodel.2021.109842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blum, Moshe & Nestel, David & Cohen, Yafit & Goldshtein, Eitan & Helman, David & Lensky, Itamar M., 2018. "Predicting Heliothis (Helicoverpa armigera) pest population dynamics with an age-structured insect population model driven by satellite data," Ecological Modelling, Elsevier, vol. 369(C), pages 1-12.
    2. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.
    3. Delphine Picart & Fabio Augusto Milner & Denis Thiéry, 2015. "Optimal Treatment Schedule in Insect Pest Control in Viticulture," Mathematical Population Studies, Taylor & Francis Journals, vol. 22(3), pages 172-181, September.
    4. Giovanni Marini & Piero Poletti & Mario Giacobini & Andrea Pugliese & Stefano Merler & Roberto Rosà, 2016. "The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-15, April.
    5. Gilioli, Gianni & Pasquali, Sara & Marchesini, Enrico, 2016. "A modelling framework for pest population dynamics and management: An application to the grape berry moth," Ecological Modelling, Elsevier, vol. 320(C), pages 348-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasquali, Sara, 2021. "A stage structured demographic model with “no-regression” growth: The case of constant development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Pasquali, Sara & Trivellato, Barbara, 2023. "A stage structured demographic model with “no-regression” growth: The case of temperature-dependent development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    3. Rossini, Luca & Contarini, Mario & Severini, Maurizio & Speranza, Stefano, 2020. "Reformulation of the Distributed Delay Model to describe insect pest populations using count variables," Ecological Modelling, Elsevier, vol. 436(C).
    4. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.
    5. Rossini, Luca & Bono Rosselló, Nicolás & Speranza, Stefano & Garone, Emanuele, 2021. "A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii," Ecological Modelling, Elsevier, vol. 456(C).
    6. Augustinus, Benno A. & Blum, Moshe & Citterio, Sandra & Gentili, Rodolfo & Helman, David & Nestel, David & Schaffner, Urs & Müller-Schärer, Heinz & Lensky, Itamar M., 2022. "Ground-truthing predictions of a demographic model driven by land surface temperatures with a weed biocontrol cage experiment," Ecological Modelling, Elsevier, vol. 466(C).
    7. Neta, Ayana & Gafni, Roni & Elias, Hilit & Bar-Shmuel, Nitsan & Shaltiel-Harpaz, Liora & Morin, Efrat & Morin, Shai, 2021. "Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models," Ecological Modelling, Elsevier, vol. 440(C).
    8. Beniamino Caputo & Mattia Manica & Federico Filipponi & Marta Blangiardo & Pietro Cobre & Luca Delucchi & Carlo Maria De Marco & Luca Iesu & Paola Morano & Valeria Petrella & Marco Salvemini & Cesare , 2020. "ZanzaMapp: A Scalable Citizen Science Tool to Monitor Perception of Mosquito Abundance and Nuisance in Italy and Beyond," IJERPH, MDPI, vol. 17(21), pages 1-19, October.
    9. Klagkou, Evridiki & Gergs, Andre & Baden, Christian U. & Lika, Konstadia, 2024. "Dynamic Energy Budget approach for modeling growth and reproduction of Neotropical stink bugs," Ecological Modelling, Elsevier, vol. 493(C).
    10. Castex, V. & García de Cortázar-Atauri, I. & Calanca, P. & Beniston, M. & Moreau, J., 2020. "Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies," Ecological Modelling, Elsevier, vol. 420(C).
    11. Neta, Ayana & Levi, Yoav & Morin, Efrat & Morin, Shai, 2023. "Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts," Ecological Modelling, Elsevier, vol. 480(C).
    12. Rossini, Luca & Severini, Maurizio & Contarini, Mario & Speranza, Stefano, 2019. "A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    13. Walker, Melody & Robert, Michael A. & Childs, Lauren M., 2021. "The importance of density dependence in juvenile mosquito development and survival: A model-based investigation," Ecological Modelling, Elsevier, vol. 440(C).
    14. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).
    15. Siti Aisyah Ruslan & Farrah Melissa Muharam & Zed Zulkafli & Dzolkhifli Omar & Muhammad Pilus Zambri, 2019. "Using satellite-measured relative humidity for prediction of Metisa plana’s population in oil palm plantations: A comparative assessment of regression and artificial neural network models," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-15, October.
    16. Kolpas, Allison & Funk, David H. & Jackson, John K. & Sweeney, Bernard W., 2020. "Phenological modeling of the parthenogenetic mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae) in White Clay Creek," Ecological Modelling, Elsevier, vol. 416(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.