IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v470y2022ics0304380022001296.html
   My bibliography  Save this article

Interpreting stoichiometric homeostasis and flexibility of soil microbial biomass carbon, nitrogen, and phosphorus

Author

Listed:
  • Asada, K.
  • Kanda, T.
  • Yamashita, N.
  • Asano, M.
  • Eguchi, S.

Abstract

The soil microbial biomass (SMB) adapts to altered soil resources either by maintaining roughly constant stoichiometry to soil carbon (C), nitrogen (N), and phosphorus (P) availability or by shifting to the elemental balance in the soil. Although a shift from stoichiometric homeostasis to flexibility (or vice versa) may affect terrestrial C and nutrient dynamics, a holistic understanding of the global distribution of microbial stoichiometric homeostasis and flexibility patterns is lacking. We synthesised three existing soil and SMB C:N:P stoichiometric ratio datasets with newly collected data to create a dataset containing 4,363 records. We devised a novel method for interpreting these data, in which the scatter plot representing the SMB C:P/soil C:P (y-axis) to SMB C:N/soil C:N (x-axis) relationship is classified into four distinct patterns: (1) both C:N and C:P are in homeostasis (along the 1:1 line), (2) only C:P exhibits flexibility (line parallel to the x-axis), (3) only C:N exhibits flexibility (line parallel to the y-axis), and (4) both C:N and C:P exhibit flexibility (concentrated at a single point). Applying this model to the large dataset, we found that microbial stoichiometric homeostasis and flexibility exhibit geographical patterns related to biome type, soil type, and precipitation, and more specifically, that natural ecosystems exhibit Pattern 1, whereas agroecosystems exhibit Pattern 3. Our findings also indicate that the SMB C:P/soil C:P and the SMB C:N/soil C:N relationships can be expressed as a simple function and are maintained by different microbial responses to soil nutrient status. These findings improve our understanding of the relationships between terrestrial C and nutrient dynamics and microbial stoichiometric homeostasis and flexibility and will enable improved modelling of these relationships.

Suggested Citation

  • Asada, K. & Kanda, T. & Yamashita, N. & Asano, M. & Eguchi, S., 2022. "Interpreting stoichiometric homeostasis and flexibility of soil microbial biomass carbon, nitrogen, and phosphorus," Ecological Modelling, Elsevier, vol. 470(C).
  • Handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001296
    DOI: 10.1016/j.ecolmodel.2022.110018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enqing Hou & Yiqi Luo & Yuanwen Kuang & Chengrong Chen & Xiankai Lu & Lifen Jiang & Xianzhen Luo & Dazhi Wen, 2020. "Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Mohammad Bahram & Falk Hildebrand & Sofia K. Forslund & Jennifer L. Anderson & Nadejda A. Soudzilovskaia & Peter M. Bodegom & Johan Bengtsson-Palme & Sten Anslan & Luis Pedro Coelho & Helery Harend & , 2018. "Structure and function of the global topsoil microbiome," Nature, Nature, vol. 560(7717), pages 233-237, August.
    3. Josep Peñuelas & Benjamin Poulter & Jordi Sardans & Philippe Ciais & Marijn van der Velde & Laurent Bopp & Olivier Boucher & Yves Godderis & Philippe Hinsinger & Joan Llusia & Elise Nardin & Sara Vicc, 2013. "Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie-Liang Liang & Shi-wei Feng & Jing-li Lu & Xiao-nan Wang & Feng-lin Li & Yu-qian Guo & Shen-yan Liu & Yuan-yue Zhuang & Sheng-ji Zhong & Jin Zheng & Ping Wen & Xinzhu Yi & Pu Jia & Bin Liao & Wen-s, 2024. "Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Samiran Banerjee & Cheng Zhao & Gina Garland & Anna Edlinger & Pablo García-Palacios & Sana Romdhane & Florine Degrune & David S. Pescador & Chantal Herzog & Lennel A. Camuy-Velez & Jordi Bascompte & , 2024. "Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Wen Zhao & Yali Yin & Shixiong Li & Jingjing Liu & Yiling Dong & Shifeng Su, 2022. "Soil Microbial Community Varied with Vegetation Types on a Small Regional Scale of the Qilian Mountains," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    5. Ernest D. Osburn & Steven G. McBride & Mohammad Bahram & Michael S. Strickland, 2024. "Global patterns in the growth potential of soil bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Dong Zhao & Huping Hou & Haiya Liu & Chen Wang & Zhongyi Ding & Jinting Xiong, 2023. "Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi," Land, MDPI, vol. 12(2), pages 1-14, February.
    7. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Mohammad Bahram & Mikk Espenberg & Jaan Pärn & Laura Lehtovirta-Morley & Sten Anslan & Kuno Kasak & Urmas Kõljalg & Jaan Liira & Martin Maddison & Mari Moora & Ülo Niinemets & Maarja Öpik & Meelis Pär, 2022. "Structure and function of the soil microbiome underlying N2O emissions from global wetlands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    11. Ernestina Hauptfeld & Nikolaos Pappas & Sandra Iwaarden & Basten L. Snoek & Andrea Aldas-Vargas & Bas E. Dutilh & F. A. Bastiaan Meijenfeldt, 2024. "Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Abdullah Kaviani Rad & Angelika Astaykina & Rostislav Streletskii & Yeganeh Afsharyzad & Hassan Etesami & Mehdi Zarei & Siva K. Balasundram, 2022. "An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils," IJERPH, MDPI, vol. 19(8), pages 1-27, April.
    13. Guo-Wei Qiu & Wen-Can Zheng & Hao-Ming Yang & Yu-Ying Wang & Xing Qi & Da Huang & Guo-Zheng Dai & Huazhong Shi & Neil M. Price & Bao-Sheng Qiu, 2024. "Phosphorus deficiency alleviates iron limitation in Synechocystis cyanobacteria through direct PhoB-mediated gene regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Sheng, Liting & Zhang, Zhanyu & Xia, Jihong & Liang, Ziwei & Yang, Jie & Chen, Xiao-an, 2021. "Impact of grass traits on the transport path and retention efficiency of nitrate nitrogen in vegetation filter strips," Agricultural Water Management, Elsevier, vol. 253(C).
    15. Li, Xiran & Zhu, Zaichun & Zeng, Hui & Piao, Shilong, 2016. "Estimation of gross primary production in China (1982–2010) with multiple ecosystem models," Ecological Modelling, Elsevier, vol. 324(C), pages 33-44.
    16. Jun Li & Yan Chen & Xiangyang Qin & Aocheng Cao & Anxiang Lu, 2022. "Impact of Biochar on Rhizosphere Bacterial Diversity Restoration Following Chloropicrin Fumigation of Planted Soil," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
    17. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).
    18. David S. Ellsworth & Kristine Y. Crous & Martin G. Kauwe & Lore T. Verryckt & Daniel Goll & Sönke Zaehle & Keith J. Bloomfield & Philippe Ciais & Lucas A. Cernusak & Tomas F. Domingues & Mirindi Eric , 2022. "Convergence in phosphorus constraints to photosynthesis in forests around the world," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Howard W. Mielke & Christopher R. Gonzales & Eric T. Powell, 2019. "Curtailing Lead Aerosols: Effects of Primary Prevention on Declining Soil Lead and Children’s Blood Lead in Metropolitan New Orleans," IJERPH, MDPI, vol. 16(12), pages 1-10, June.
    20. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.