IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i5p496-d1599567.html
   My bibliography  Save this article

Available Nitrogen as the Determinant of Variability in Soil Microbial Communities Throughout Lycium chinense Growth Zones in the Qaidam Basin, Qinghai, China

Author

Listed:
  • Qianqian Su

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

  • Jie Li

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

  • Jingui Wang

    (College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China)

  • Gang Li

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

  • Yang Sun

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

  • Xiaoqin Liu

    (The Forestry Department of Hunan Province, Changsha 410004, China)

  • Lan Luo

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

  • Xinrui Wang

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

  • Guilong Zhang

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

Abstract

Understanding the compositional and functional dynamics of soil microbial communities is crucial for optimizing soil fertility and promoting agricultural sustainability. In this study, the spatial variability of soil properties and microbial communities was investigated across four Lycium chinense growing regions (Golmud, Dengle, Delingha and Ulan) around Qaidam Basin in China, aiming to explore their relationships and implications for soil management. Soil samples were collected from four Lycium chinense growing regions around the Qaidam Basin, China, and analyzed for changes in bacterial and fungal communities using high-throughput amplicon sequencing targeting the 16S rRNA gene and ITS region, respectively. The results showed spatial heterogeneity of soil fertility around the Qinghai Basin. The soil organic matter peaked at 17.89 g/kg in WL, compared to a low of 6.72 g/kg in GLMD, while soil nitrate concentrations reached a maximum of 188.91 mg/kg in WL versus 47.48 mg/kg in GLMD. The soil nitrate and ammonium concentrations emerged as a key factor influencing the β -diversity of microbial communities, despite having no significant effect on α -diversity. Through network analysis and Z-P plots, 53 keystone microbial taxa such as Truepera , Metarhizium , and Gemmatimonas were identified, which were closely associated with nitrogen fixation, nitrification, and denitrification, suggesting essential roles in nitrogen cycling and ecosystem stability. Furthermore, the nutrient-rich eastern regions had more complex microbial co-occurrence networks and a greater abundance of keystone microbial species compared to the nutrient-poor western regions. In conclusion, this study offers insights into soil management to enhance soil health and promote sustainable agricultural production in high-altitude areas.

Suggested Citation

  • Qianqian Su & Jie Li & Jingui Wang & Gang Li & Yang Sun & Xiaoqin Liu & Lan Luo & Xinrui Wang & Guilong Zhang, 2025. "Available Nitrogen as the Determinant of Variability in Soil Microbial Communities Throughout Lycium chinense Growth Zones in the Qaidam Basin, Qinghai, China," Agriculture, MDPI, vol. 15(5), pages 1-22, February.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:5:p:496-:d:1599567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/5/496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/5/496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Bahram & Falk Hildebrand & Sofia K. Forslund & Jennifer L. Anderson & Nadejda A. Soudzilovskaia & Peter M. Bodegom & Johan Bengtsson-Palme & Sten Anslan & Luis Pedro Coelho & Helery Harend & , 2018. "Structure and function of the global topsoil microbiome," Nature, Nature, vol. 560(7717), pages 233-237, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samiran Banerjee & Cheng Zhao & Gina Garland & Anna Edlinger & Pablo García-Palacios & Sana Romdhane & Florine Degrune & David S. Pescador & Chantal Herzog & Lennel A. Camuy-Velez & Jordi Bascompte & , 2024. "Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Wen Zhao & Yali Yin & Shixiong Li & Jingjing Liu & Yiling Dong & Shifeng Su, 2022. "Soil Microbial Community Varied with Vegetation Types on a Small Regional Scale of the Qilian Mountains," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    4. Ernest D. Osburn & Steven G. McBride & Mohammad Bahram & Michael S. Strickland, 2024. "Global patterns in the growth potential of soil bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Simon A. Schroeter & Alice May Orme & Katharina Lehmann & Robert Lehmann & Narendrakumar M. Chaudhari & Kirsten Küsel & He Wang & Anke Hildebrandt & Kai Uwe Totsche & Susan Trumbore & Gerd Gleixner, 2025. "Hydroclimatic extremes threaten groundwater quality and stability," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Dong Zhao & Huping Hou & Haiya Liu & Chen Wang & Zhongyi Ding & Jinting Xiong, 2023. "Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi," Land, MDPI, vol. 12(2), pages 1-14, February.
    7. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Mohammad Bahram & Mikk Espenberg & Jaan Pärn & Laura Lehtovirta-Morley & Sten Anslan & Kuno Kasak & Urmas Kõljalg & Jaan Liira & Martin Maddison & Mari Moora & Ülo Niinemets & Maarja Öpik & Meelis Pär, 2022. "Structure and function of the soil microbiome underlying N2O emissions from global wetlands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Asada, K. & Kanda, T. & Yamashita, N. & Asano, M. & Eguchi, S., 2022. "Interpreting stoichiometric homeostasis and flexibility of soil microbial biomass carbon, nitrogen, and phosphorus," Ecological Modelling, Elsevier, vol. 470(C).
    11. Ernestina Hauptfeld & Nikolaos Pappas & Sandra Iwaarden & Basten L. Snoek & Andrea Aldas-Vargas & Bas E. Dutilh & F. A. Bastiaan Meijenfeldt, 2024. "Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Abdullah Kaviani Rad & Angelika Astaykina & Rostislav Streletskii & Yeganeh Afsharyzad & Hassan Etesami & Mehdi Zarei & Siva K. Balasundram, 2022. "An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils," IJERPH, MDPI, vol. 19(8), pages 1-27, April.
    13. Wenxiang Wu & Xuesong Du & Zhiwei Qin & Qingrong Liu & Fujing Pan, 2024. "Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China," Agriculture, MDPI, vol. 14(12), pages 1-20, November.
    14. Lili Bai & Wenying Wang & Zhe Chen & Xiaoyue Chen & Youcai Xiong, 2025. "The Variations in Soil Microbial Communities and Their Mechanisms Along an Elevation Gradient in the Qilian Mountains, China," Sustainability, MDPI, vol. 17(5), pages 1-16, February.
    15. Jun Li & Yan Chen & Xiangyang Qin & Aocheng Cao & Anxiang Lu, 2022. "Impact of Biochar on Rhizosphere Bacterial Diversity Restoration Following Chloropicrin Fumigation of Planted Soil," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
    16. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Howard W. Mielke & Christopher R. Gonzales & Eric T. Powell, 2019. "Curtailing Lead Aerosols: Effects of Primary Prevention on Declining Soil Lead and Children’s Blood Lead in Metropolitan New Orleans," IJERPH, MDPI, vol. 16(12), pages 1-10, June.
    18. Jincai Ma & Sumiya Nergui & Ziming Han & Guannan Huang & Huiru Li & Rui Zhang & Liyue Zhu & Jiafen Liao, 2019. "The Variation of the Soil Bacterial and Fungal Community Is Linked to Land Use Types in Northeast China," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    19. Tarquin Netherway & Jan Bengtsson & Franz Buegger & Joachim Fritscher & Jane Oja & Karin Pritsch & Falk Hildebrand & Eveline J. Krab & Mohammad Bahram, 2024. "Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Mengxia Zhou & Hui Yang & Tongbin Zhu & Cheng Zhang & Degen Zhu, 2022. "Preliminary Research on Agricultural Cultivation Decreasing Amino Sugar Accumulation in Calcareous Soils in Subtropical Karst Region of China," Land, MDPI, vol. 11(10), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:5:p:496-:d:1599567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.