IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55890-2.html
   My bibliography  Save this article

Hydroclimatic extremes threaten groundwater quality and stability

Author

Listed:
  • Simon A. Schroeter

    (Max Planck Institute for Biogeochemistry)

  • Alice May Orme

    (Max Planck Institute for Biogeochemistry)

  • Katharina Lehmann

    (Friedrich Schiller University)

  • Robert Lehmann

    (Friedrich Schiller University)

  • Narendrakumar M. Chaudhari

    (Friedrich Schiller University
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig)

  • Kirsten Küsel

    (Friedrich Schiller University
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Friedrich Schiller University)

  • He Wang

    (Friedrich Schiller University)

  • Anke Hildebrandt

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Helmholtz-Centre for Environmental Science – UFZ
    Friedrich Schiller University)

  • Kai Uwe Totsche

    (Friedrich Schiller University
    Friedrich Schiller University)

  • Susan Trumbore

    (Max Planck Institute for Biogeochemistry)

  • Gerd Gleixner

    (Max Planck Institute for Biogeochemistry)

Abstract

Heavy precipitation, drought, and other hydroclimatic extremes occur more frequently than in the past climate reference period (1961–1990). Given their strong effect on groundwater recharge dynamics, these phenomena increase the vulnerability of groundwater quantity and quality. Over the course of the past decade, we have documented changes in the composition of dissolved organic matter in groundwater. We show that fractions of ingressing surface-derived organic molecules increased significantly as groundwater levels declined, whereas concentrations of dissolved organic carbon remained constant. Molecular composition changeover was accelerated following 2018’s extreme summer drought. These findings demonstrate that hydroclimatic extremes promote rapid transport between surface ecosystems and groundwaters, thereby enabling xenobiotic substances to evade microbial processing, accrue in greater abundance in groundwater, and potentially compromise the safe nature of these potable water sources. Groundwater quality is far more vulnerable to the impact of recent climate anomalies than is currently recognized, and the molecular composition of dissolved organic matter can be used as a comprehensive indicator for groundwater quality deterioration.

Suggested Citation

  • Simon A. Schroeter & Alice May Orme & Katharina Lehmann & Robert Lehmann & Narendrakumar M. Chaudhari & Kirsten Küsel & He Wang & Anke Hildebrandt & Kai Uwe Totsche & Susan Trumbore & Gerd Gleixner, 2025. "Hydroclimatic extremes threaten groundwater quality and stability," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55890-2
    DOI: 10.1038/s41467-025-55890-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55890-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55890-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc G. Kramer & Oliver A. Chadwick, 2018. "Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale," Nature Climate Change, Nature, vol. 8(12), pages 1104-1108, December.
    2. Liza K. McDonough & Martin S. Andersen & Megan I. Behnke & Helen Rutlidge & Phetdala Oudone & Karina Meredith & Denis M. O’Carroll & Isaac R. Santos & Christopher E. Marjo & Robert G. M. Spencer & Amy, 2022. "A new conceptual framework for the transformation of groundwater dissolved organic matter," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    4. Mohammad Bahram & Falk Hildebrand & Sofia K. Forslund & Jennifer L. Anderson & Nadejda A. Soudzilovskaia & Peter M. Bodegom & Johan Bengtsson-Palme & Sten Anslan & Luis Pedro Coelho & Helery Harend & , 2018. "Structure and function of the global topsoil microbiome," Nature, Nature, vol. 560(7717), pages 233-237, August.
    5. Liza K. McDonough & Isaac R. Santos & Martin S. Andersen & Denis M. O’Carroll & Helen Rutlidge & Karina Meredith & Phetdala Oudone & John Bridgeman & Daren C. Gooddy & James P. R. Sorensen & Dan J. La, 2020. "Changes in global groundwater organic carbon driven by climate change and urbanization," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Scott Jasechko & Hansjörg Seybold & Debra Perrone & Ying Fan & Mohammad Shamsudduha & Richard G. Taylor & Othman Fallatah & James W. Kirchner, 2024. "Rapid groundwater decline and some cases of recovery in aquifers globally," Nature, Nature, vol. 625(7996), pages 715-721, January.
    7. Andreas Wunsch & Tanja Liesch & Stefan Broda, 2022. "Deep learning shows declining groundwater levels in Germany until 2100 due to climate change," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad Reza Soltanian & Farzad Moeini & Zhenxue Dai & Audrey H. Sawyer & Jan H. Fleckenstein & John Doherty & Zachary Curtis & Abhijit Chaudhuri & Gabriele Chiogna & Marwan Fahs & Weon Shik Han & Zai, 2024. "Sustainability Nexus AID: groundwater," Sustainability Nexus Forum, Springer, vol. 32(1), pages 1-12, December.
    2. Helena Osterholz & Stephanie Turner & Linda J. Alakangas & Eva-Lena Tullborg & Thorsten Dittmar & Birgitta E. Kalinowski & Mark Dopson, 2022. "Terrigenous dissolved organic matter persists in the energy-limited deep groundwaters of the Fennoscandian Shield," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. José Gescilam S. M. Uchôa & Paulo Tarso S. Oliveira & André S. Ballarin & Antônio A. Meira Neto & Didier Gastmans & Scott Jasechko & Ying Fan & Edson C. Wendland, 2024. "Widespread potential for streamflow leakage across Brazil," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Qianqian Su & Jie Li & Jingui Wang & Gang Li & Yang Sun & Xiaoqin Liu & Lan Luo & Xinrui Wang & Guilong Zhang, 2025. "Available Nitrogen as the Determinant of Variability in Soil Microbial Communities Throughout Lycium chinense Growth Zones in the Qaidam Basin, Qinghai, China," Agriculture, MDPI, vol. 15(5), pages 1-22, February.
    5. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Jonathan O. Hernandez, 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades," Land, MDPI, vol. 11(11), pages 1-18, November.
    7. Zappa, Luca & Dari, Jacopo & Modanesi, Sara & Quast, Raphael & Brocca, Luca & De Lannoy, Gabrielle & Massari, Christian & Quintana-Seguí, Pere & Barella-Ortiz, Anais & Dorigo, Wouter, 2024. "Benefits and pitfalls of irrigation timing and water amounts derived from satellite soil moisture," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    10. Wen Zhao & Yali Yin & Shixiong Li & Jingjing Liu & Yiling Dong & Shifeng Su, 2022. "Soil Microbial Community Varied with Vegetation Types on a Small Regional Scale of the Qilian Mountains," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    11. Christina Caron, 2024. "Eroding Natural Capital: An Alternative Explanation for the Secular Decline in Productivity Growth," International Productivity Monitor, Centre for the Study of Living Standards, vol. 47, pages 109-147, Fall.
    12. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    13. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Ernest D. Osburn & Steven G. McBride & Mohammad Bahram & Michael S. Strickland, 2024. "Global patterns in the growth potential of soil bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Anna Boser & Kelly Caylor & Ashley Larsen & Madeleine Pascolini-Campbell & John T. Reager & Tamma Carleton, 2024. "Field-scale crop water consumption estimates reveal potential water savings in California agriculture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Xin Deng & Lingzhi Zhang & Rong Xu & Miao Zeng & Qiang He & Dingde Xu & Yanbin Qi, 2022. "Do Cooperatives Affect Groundwater Protection? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    17. Dong Zhao & Huping Hou & Haiya Liu & Chen Wang & Zhongyi Ding & Jinting Xiong, 2023. "Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi," Land, MDPI, vol. 12(2), pages 1-14, February.
    18. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    19. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    20. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55890-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.