IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v440y2021ics0304380020304427.html
   My bibliography  Save this article

Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling

Author

Listed:
  • Goodbody, Tristan R.H.
  • Coops, Nicholas C.
  • Srivastava, Vivek
  • Parsons, Bethany
  • Kearney, Sean P.
  • Rickbeil, Gregory J.M.
  • Stenhouse, Gordon B.

Abstract

Understanding biodiversity pressures associated with recreation and tourism is a major challenge for conservation planning and landscape management. While estimates of landscape use are often collected using mechanisms such as park entry fees and traffic density estimates, these data do not provide substantial detail about the spatial location or intensity of recreation and tourism across biodiversity management areas. To better predict patterns of recreation and tourism likelihood to support conservation planning, we used social network data from Facebook(™), Flickr(™), Google(™), Strava(™), and Wikilocs(™) along with a suite of remote-sensing-derived environmental covariates in a maximum entropy (MaxEnt) presence-only modelling framework. Social network samples were compiled and processed to reduce sampling bias and spatial autocorrelation. Road access, climate data, and remote sensing covariates describing vegetation greenness, disturbance, topography, and moisture were used as predictor variables in the MaxEnt modelling framework. Our focus site was a grizzly bear (Ursus arctos) management area in west-central Alberta, Canada. Individual models were developed for each social network dataset, as well as a combined model including all the samples . Mean cross-validated AUC, partial ROC, and true skill statistics (TSS) were used to evaluate model accuracy. Results indicated that the covariates proposed were able to best model Strava and Wikilocs activity (TSS = 0.69 and 0.50, respectively), while samples from Flickr or the combination of all social networks were least accurate (TSS = 0.32). The “access” covariate was most important for MaxEnt training gain across a number of social network models, highlighting the importance of access for recreation and tourism likelihood. The summer heat moisture index and normalized burn ratio were also useful spatial covariates in many predictions. Recreation and tourism likelihood maps were combined with grizzly bear telemetry data to examine how recreation and tourism may affect grizzly bear behaviour. All social network models found a similar influence on grizzly bear behaviour, with increasing recreation and tourism use resulting in decreased foraging behaviour and increased rapid movement, suggesting that the models developed here are useful tools for predicting grizzly bear behaviour and planning conservation strategies for the species.

Suggested Citation

  • Goodbody, Tristan R.H. & Coops, Nicholas C. & Srivastava, Vivek & Parsons, Bethany & Kearney, Sean P. & Rickbeil, Gregory J.M. & Stenhouse, Gordon B., 2021. "Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling," Ecological Modelling, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304427
    DOI: 10.1016/j.ecolmodel.2020.109377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Boulanger & Gordon B Stenhouse, 2014. "The Impact of Roads on the Demography of Grizzly Bears in Alberta," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
    2. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    2. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    3. Wongsathit Wongloet & Prach Kongthong & Aingorn Chaiyes & Worapong Singchat & Warong Suksavate & Nattakan Ariyaraphong & Thitipong Panthum & Artem Lisachov & Kitipong Jaisamut & Jumaporn Sonongbua & T, 2023. "Genetic Monitoring of the Last Captive Population of Greater Mouse-Deer on the Thai Mainland and Prediction of Habitat Suitability before Reintroduction," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    4. Inês Silva & Matthew Crane & Pongthep Suwanwaree & Colin Strine & Matt Goode, 2018. "Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    5. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    6. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    7. Liu, Canran & White, Matt & Newell, Graeme & Griffioen, Peter, 2013. "Species distribution modelling for conservation planning in Victoria, Australia," Ecological Modelling, Elsevier, vol. 249(C), pages 68-74.
    8. Lin, Yu-Pin & Wang, Cheng-Long & Yu, Hsiao-Hsuan & Huang, Chung-Wei & Wang, Yung-Chieh & Chen, Yu-Wen & Wu, Wei-Yao, 2011. "Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using genetic algorithms and kriging methods," Ecological Modelling, Elsevier, vol. 222(3), pages 762-775.
    9. Srivastava, Vivek & Carroll, Allan L., 2023. "Dynamic distribution modelling using a native invasive species, the mountain pine beetle," Ecological Modelling, Elsevier, vol. 482(C).
    10. Gisel Garza & Crystian Sadiel Venegas Barrera & Jon Dale & José Guadalupe Martínez-Ávalos & Teresa Patricia Feria Arroyo, 2022. "Towards Conserving Crop Wild Relatives along the Texas–Mexico Border: The Case of Manihot walkerae," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    11. Götz Schroth & Peter Läderach & Armando Isaac Martinez-Valle & Christian Bunn, 2017. "From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 903-927, August.
    12. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    13. Soria-Auza, Rodrigo W. & Kessler, Michael & Bach, Kerstin & Barajas-Barbosa, Paola M. & Lehnert, Marcus & Herzog, Sebastian K. & Böhner, Jürgen, 2010. "Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia," Ecological Modelling, Elsevier, vol. 221(8), pages 1221-1229.
    14. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    15. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    16. Daniela Remolina-Figueroa & David A. Prieto-Torres & Wesley Dáttilo & Ernesto Salgado Díaz & Laura E. Nuñez Rosas & Claudia Rodríguez-Flores & Adolfo G. Navarro-Sigüenza & María del Coro Arizmendi, 2022. "Together forever? Hummingbird-plant relationships in the face of climate warming," Climatic Change, Springer, vol. 175(1), pages 1-21, November.
    17. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    18. Junhee Lee & Youngjae Yoo & Raeik Jang & Seongwoo Jeon, 2023. "Mapping the Species Richness of Woody Plants in Republic of Korea," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    19. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    20. Huihui Zhang & Xiao Sun & Guoshuai Zhang & Xinke Zhang & Yujing Miao & Min Zhang & Zhan Feng & Rui Zeng & Jin Pei & Linfang Huang, 2022. "Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch : Predictions Based on MaxEnt Ecological Niche Modeling," Sustainability, MDPI, vol. 15(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.