IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v319y2016icp63-111.html
   My bibliography  Save this article

The cardinal hypotheses of Holoecology

Author

Listed:
  • Patten, Bernard C.

Abstract

Causality in Complex Adaptive Hierarchical Systems (CAHSystems) is bipolar. In the hierarchical organization, within-scale contributions come both from below (reductionistic) and above (holistic). Holoecology is ecology that seeks to bring holism and formalism into the traditional mix of descriptive, empirical approaches to elaborating ecological cause and effect. The holism is philosophical and methodological, ecological modeling being an important element in the latter. The formalism (presently) is built around a body of environmental system theory called the Theory of Environs. This theory encompasses a set of “principles” of transactional network organization, where a transaction is a flow of conservative substance (energy or matter) between two system components. These are numbered, and referred to not as principles, but as cardinal hypotheses, because they are conditioned on verification or falsification by empirical or theoretical means. Presently, there are 20 of them:1.Network pathway proliferation—increase of pathway numbers with length.2.Network nonlocality—dominance of indirect effects.3.Network homogenization—trend to uniform distribution of transaction based causation.4.Network aggradation—network growth and development properties move systems away from thermodynamic equilibrium.5.Network throughflow maximization—system-wide virtual goal function.6.Network storage maximization—system-wide concrete goal function.7.Network boundary amplification—benefits of agency in boundary crossing.8.Network interior amplification—benefits of high node in-degree.9.Network enfolding—entwinement of boundary relations into deep interiors.10.Network unfolding—conversion of networks to macrochains.11.Network centrifugality/centripetality—expansion and contraction of influence from node storage in, respectively, output and input environs.12.Network topogenesis—quantitative determination of stocks and flows by topological properties of qualitative digraphs.13.Network synergism—system-wide benefits>costs emergent in network organization.14.Network interaction typing—structural determination (by digraph topology) vs. parametric determination (by quantitative flow-storage transactions) of qualitative relations specifying binary interaction types (e.g., predation, competition, mutualism) between component pairs in systems.15.Network mutualism—emergence of positive interaction types (symbioses) in network organization.16.Network Janus Enigma Hypothesis—stronger adjacent transactions produce stronger ultimate expression of positive binary relations (network synergism), but also stronger proximate environmental degradation.17.Network clockwork stockworks (holon autonomy)—time delay of substance flow in storage causes nodes to dominate in determining network properties; “‘net’works” are really more like “clockwork ‘stock’works” that contribute constrained autonomy to their entities.18.Network environ autonomy—boundary-based partitioning of transactional stocks and flows in systems, causing environs to be isolated “small worlds” spanning intra-system organization and expressing implicate order.19.Network distributed control—Expression among system components of distributed (indirect, decentralized, or remote) control at a network distance.20.Network ecogenetic coevolution—system-wide coevolution of mutually implicated parts and wholes to achieve and sustain systemic coherence and life.

Suggested Citation

  • Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.
  • Handle: RePEc:eee:ecomod:v:319:y:2016:i:c:p:63-111
    DOI: 10.1016/j.ecolmodel.2015.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015003488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
    2. Fath, Brian D., 2007. "Network mutualism: Positive community-level relations in ecosystems," Ecological Modelling, Elsevier, vol. 208(1), pages 56-67.
    3. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    4. Tollner, E.W. & Schramski, J.R. & Kazanci, C. & Patten, B.C., 2009. "Implications of network particle tracking (NPT) for ecological model interpretation," Ecological Modelling, Elsevier, vol. 220(16), pages 1904-1912.
    5. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    6. Buzhdygan, O.Y. & Rudenko, S.S. & Patten, B.C. & Kostyshyn, S.S., 2014. "Food-web topology of Ukrainian mountain grasslands: Comparative properties and relations to ecosystem parameters," Ecological Modelling, Elsevier, vol. 293(C), pages 128-138.
    7. Kazanci, C. & Matamba, L. & Tollner, E.W., 2009. "Cycling in ecosystems: An individual based approach," Ecological Modelling, Elsevier, vol. 220(21), pages 2908-2914.
    8. Patten, Bernard C., 2014. "Systems ecology and environmentalism: Getting the science right. Part I: Facets for a more holistic Nature Book of ecology," Ecological Modelling, Elsevier, vol. 293(C), pages 4-21.
    9. Kazanci, C. & Ma, Q., 2012. "Extending ecological network analysis measures to dynamic ecosystem models," Ecological Modelling, Elsevier, vol. 242(C), pages 180-188.
    10. Whipple, Stuart J. & Borrett, Stuart R. & Patten, Bernard C. & Gattie, David K. & Schramski, John R. & Bata, Seth A., 2007. "Indirect effects and distributed control in ecosystems: Comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 1-17.
    11. Patten, Bernard C., 2015. "Link tracking: Quantifying network flows from qualitative node–link digraphs," Ecological Modelling, Elsevier, vol. 295(C), pages 47-58.
    12. Matamba, L. & Kazanci, C. & Schramski, J.R. & Blessing, M. & Alexander, P. & Patten, B.C., 2009. "Throughflow analysis: A stochastic approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3174-3181.
    13. Ulanowicz, Robert E., 2014. "Reckoning the nonexistent: Putting the science right," Ecological Modelling, Elsevier, vol. 293(C), pages 22-30.
    14. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    15. Shevtsov, Jane & Kazanci, Caner & Patten, Bernard C., 2009. "Dynamic environ analysis of compartmental systems: A computational approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3219-3224.
    16. Schramski, J.R. & Gattie, D.K. & Patten, B.C. & Borrett, S.R. & Fath, B.D. & Whipple, S.J., 2007. "Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 18-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoping Li & Sai Hu & Lifu Jiang & Bing Han & Jie Li & Xuan Wei, 2023. "Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace," Land, MDPI, vol. 12(1), pages 1-18, January.
    2. Patten, Bernard C., 2016. "Systems ecology and environmentalism: Getting the science right. Part II: The Janus Enigma Hypothesis," Ecological Modelling, Elsevier, vol. 335(C), pages 101-138.
    3. Jørgensen, Sven E. & Nielsen, Søren Nors & Fath, Brian D., 2016. "Recent progress in systems ecology," Ecological Modelling, Elsevier, vol. 319(C), pages 112-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patten, Bernard C., 2016. "Systems ecology and environmentalism: Getting the science right. Part II: The Janus Enigma Hypothesis," Ecological Modelling, Elsevier, vol. 335(C), pages 101-138.
    2. Coskun, Huseyin, 2018. "Dynamic Ecological System Analysis," OSF Preprints 35xkb, Center for Open Science.
    3. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    4. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    5. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    6. Coskun, Huseyin, 2018. "Static Ecological System Measures," OSF Preprints g4xzt, Center for Open Science.
    7. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    8. Fath, Brian D., 2014. "Sustainable systems promote wholeness-extending transformations: The contributions of systems thinking," Ecological Modelling, Elsevier, vol. 293(C), pages 42-48.
    9. Rodríguez, Ricardo A. & Herrera, Ada Ma. & Riera, Rodrigo & Delgado, Juan D. & Quirós, Ángel & Perdomo, María E. & Santander, Jacobo & Miranda, Jezahel V. & Fernández-Rodríguez, María J. & Jiménez-Rod, 2015. "Thermostatistical distribution of a trophic energy proxy with analytical consequences for evolutionary ecology, species coexistence and the maximum entropy formalism," Ecological Modelling, Elsevier, vol. 296(C), pages 24-35.
    10. Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
    11. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    12. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    13. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    14. Borrett, S.R. & Freeze, M.A., 2011. "Reconnecting environs to their environment," Ecological Modelling, Elsevier, vol. 222(14), pages 2393-2403.
    15. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    16. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    17. Coskun, Huseyin, 2018. "Dynamic Ecological System Measures," OSF Preprints j2pd3, Center for Open Science.
    18. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    19. Coskun, Huseyin, 2018. "Static Ecological System Analysis," OSF Preprints zqxc5, Center for Open Science.
    20. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:319:y:2016:i:c:p:63-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.