IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i22p3174-3181.html
   My bibliography  Save this article

Throughflow analysis: A stochastic approach

Author

Listed:
  • Matamba, L.
  • Kazanci, C.
  • Schramski, J.R.
  • Blessing, M.
  • Alexander, P.
  • Patten, B.C.

Abstract

Ecological network analysis (ENA), predicated on systems theory and Leontiev input–output analysis, is a method widely used in ecology to reveal ecosystem properties. An important ecosystem property computed in ENA is throughflows, the amount of matter/energy leaving each compartment of the ecosystem. Throughflows are analyzed via a matrix N representing their relationships to the driving input at the boundary. Network particle tracking (NPT) builds on ENA to offer a Lagrangian particle method that describes the activity of the ecosystem at the microscopic level. This paper introduces a Lagrangian throughflow analysis methodology using NPT and shows that the NPT throughflow matrix, N, agrees with the conventional ENA throughflow matrix, N, for ecosystems at steady-state with donor-controlled flows. The matrix N is computed solely from the pathways (particles’ histories) generated by NPT simulations and its average over multiple runs of the algorithm with longer simulation time agrees with the Eulerian N matrix (Law of Large Numbers). While the traditional NEA throughflow analysis is mostly used with steady-state ecosystem models, the Lagrangian throughflow analysis that we propose can be used with non-steady-state models and paves the way for the development of dynamic throughflow analysis.

Suggested Citation

  • Matamba, L. & Kazanci, C. & Schramski, J.R. & Blessing, M. & Alexander, P. & Patten, B.C., 2009. "Throughflow analysis: A stochastic approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3174-3181.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:22:p:3174-3181
    DOI: 10.1016/j.ecolmodel.2009.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009004815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tollner, Ernest W. & Kazanci, Caner, 2007. "Defining an ecological thermodynamics using discrete simulation approaches," Ecological Modelling, Elsevier, vol. 208(1), pages 68-79.
    2. Whipple, Stuart J. & Borrett, Stuart R. & Patten, Bernard C. & Gattie, David K. & Schramski, John R. & Bata, Seth A., 2007. "Indirect effects and distributed control in ecosystems: Comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 1-17.
    3. Kazancı, Caner, 2007. "EcoNet: A new software for ecological modeling, simulation and network analysis," Ecological Modelling, Elsevier, vol. 208(1), pages 3-8.
    4. Schramski, J.R. & Gattie, D.K. & Patten, B.C. & Borrett, S.R. & Fath, B.D. & Whipple, S.J., 2007. "Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 18-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
    2. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    3. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    4. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    5. Patten, Bernard C., 2015. "Link tracking: Quantifying network flows from qualitative node–link digraphs," Ecological Modelling, Elsevier, vol. 295(C), pages 47-58.
    6. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    7. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    8. Kazanci, C. & Ma, Q., 2012. "Extending ecological network analysis measures to dynamic ecosystem models," Ecological Modelling, Elsevier, vol. 242(C), pages 180-188.
    9. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    2. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    3. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.
    4. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    5. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    6. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Tollner, E.W. & Schramski, J.R. & Kazanci, C. & Patten, B.C., 2009. "Implications of network particle tracking (NPT) for ecological model interpretation," Ecological Modelling, Elsevier, vol. 220(16), pages 1904-1912.
    8. Hines, David E. & Borrett, Stuart R., 2014. "A comparison of network, neighborhood, and node levels of analyses in two models of nitrogen cycling in the Cape Fear River Estuary," Ecological Modelling, Elsevier, vol. 293(C), pages 210-220.
    9. Yang, Zhifeng & Mao, Xufeng, 2011. "Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3785-3794.
    10. Borrett, S.R. & Freeze, M.A., 2011. "Reconnecting environs to their environment," Ecological Modelling, Elsevier, vol. 222(14), pages 2393-2403.
    11. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    12. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    13. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    14. Bata, Seth A. & Borrett, Stuart R. & Patten, Bernard C. & Whipple, Stuart J. & Schramski, John R. & Gattie, David K., 2007. "Equivalence of throughflow- and storage-based environs," Ecological Modelling, Elsevier, vol. 206(3), pages 400-406.
    15. Li, Y. & Yang, Z.F., 2011. "Quantifying the sustainability of water use systems: Calculating the balance between network efficiency and resilience," Ecological Modelling, Elsevier, vol. 222(10), pages 1771-1780.
    16. Zhang, Xiaolin & Zhang, Yan & Wang, Yifan & Fath, Brian D., 2021. "Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis," Ecological Modelling, Elsevier, vol. 443(C).
    17. Lu, Jingzhao & Lu, Hongwei & Wang, Weipeng & Feng, SanSan & Lei, Kaiwen, 2021. "Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis," Ecological Modelling, Elsevier, vol. 455(C).
    18. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    19. Jordán, Ferenc & Okey, Thomas A. & Bauer, Barbara & Libralato, Simone, 2008. "Identifying important species: Linking structure and function in ecological networks," Ecological Modelling, Elsevier, vol. 216(1), pages 75-80.
    20. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:22:p:3174-3181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.