IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i1p165-d1024651.html
   My bibliography  Save this article

Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace

Author

Listed:
  • Xiaoping Li

    (School of Humanities and Law, Jiangsu Ocean University, Lianyungang 222005, China)

  • Sai Hu

    (School of Humanities and Law, Jiangsu Ocean University, Lianyungang 222005, China
    School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Lifu Jiang

    (School of Humanities and Law, Jiangsu Ocean University, Lianyungang 222005, China)

  • Bing Han

    (School of Humanities and Law, Jiangsu Ocean University, Lianyungang 222005, China)

  • Jie Li

    (School of Humanities and Law, Jiangsu Ocean University, Lianyungang 222005, China)

  • Xuan Wei

    (School of Humanities and Law, Jiangsu Ocean University, Lianyungang 222005, China)

Abstract

Carbon emissions are critical to climate change, and land-use change is an essential source of growth in carbon emissions. Research on land-use carbon emissions has become one of the hotspots in academic research. To explore the research hotspots and development trends of land-use carbon emissions in the last 20 years, CiteSpace software was used to conduct a quantitative analysis of relevant literature. This paper was based on the China National Knowledge Infrastructure (CNKI) and Web of Science (WoS) database literature on land-use carbon emissions from 2001 to 2020. The scientific research cooperation network CiteSpace software, with keyword co-occurrence, clustering, and burst word detection, was used to systematically analyze the main research strengths, hotspots and frontiers and clarify the research progress. The research results are as follows: (1) the amount of literature and the depth of research on land-use carbon emissions have increased yearly. However, there is little cooperation between research institutions and scholars, and there is still a lack of large-scale and stable research teams. (2) At the research hotspot level, the English literature focuses on building models and theoretical frameworks to study the internal mechanisms and driving factors of carbon emissions and climate change. The Chinese literature focuses on achieving regional carbon emissions reductions and carbon cycle goals and optimizing a low-carbon economy, transportation and land-use structure. (3) Research frontiers and trends show that the English literature first explored carbon sequestration, organic carbon, and carbon accounting. In China, the research frontiers are gradually becoming focused on influencing factors, decoupling analysis, and the built environment. The study will strengthen the intensity and depth of global carbon emission research and provide a reference for improving global climate change, protecting ecology and balancing economic development.

Suggested Citation

  • Xiaoping Li & Sai Hu & Lifu Jiang & Bing Han & Jie Li & Xuan Wei, 2023. "Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace," Land, MDPI, vol. 12(1), pages 1-18, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:165-:d:1024651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/1/165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/1/165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiuyue Xia & Lu Li & Jie Dong & Bin Zhang, 2021. "Reduction Effect and Mechanism Analysis of Carbon Trading Policy on Carbon Emissions from Land Use," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    2. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    3. Hualin Xie & Yuyang Wen & Yongrok Choi & Xinmin Zhang, 2021. "Global Trends on Food Security Research: A Bibliometric Analysis," Land, MDPI, vol. 10(2), pages 1-21, January.
    4. Huamei Shao & Gunwoo Kim & Qing Li & Galen Newman, 2021. "Web of Science-Based Green Infrastructure: A Bibliometric Analysis in CiteSpace," Land, MDPI, vol. 10(7), pages 1-19, July.
    5. Mingxing Li & Xinxing Wang & Zihao Wang & Babar Maqbool & Abid Hussain & Waris Ali Khan, 2022. "Bibliometric Analysis of the Research on the Impact of Environmental Regulation on Green Technology Innovation Based on CiteSpace," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    6. Yunlong Niu & Mastura Adam & Hazreena Hussein, 2022. "Connecting Urban Green Spaces with Children: A Scientometric Analysis Using CiteSpace," Land, MDPI, vol. 11(8), pages 1-23, August.
    7. Zhenhua Wu & Linghui Zhou & Yabei Wang, 2022. "Prediction of the Spatial Pattern of Carbon Emissions Based on Simulation of Land Use Change under Different Scenarios," Land, MDPI, vol. 11(10), pages 1-19, October.
    8. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.
    9. Wang, Yizhong & Hang, Ye & Wang, Qunwei, 2022. "Joint or separate? An economic-environmental comparison of energy-consuming and carbon emissions permits trading in China," Energy Economics, Elsevier, vol. 109(C).
    10. Likang Zhang & Jichang Dong & Zhi Dong & Xiuting Li, 2022. "Research Hotspots and Trend Analysis in the Field of Regional Economics and Carbon Emissions since the 21st Century: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Le Zhang & Guan-Di He & Ye-Qing He & Teng-Bing He, 2022. "Bibliometrics-Based: Trends in Phytoremediation of Potentially Toxic Elements in Soil," Land, MDPI, vol. 11(11), pages 1-16, November.
    2. Zhang, Yanfang & Wei, Jinpeng & Gao, Qi & Shi, Xunpeng & Zhou, Dequn, 2022. "Coordination between the energy-consumption permit trading scheme and carbon emissions trading: Evidence from China," Energy Economics, Elsevier, vol. 116(C).
    3. Meiyan Gao & Zongmin Wang & Haibo Yang, 2022. "Review of Urban Flood Resilience: Insights from Scientometric and Systematic Analysis," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    4. Phemelo Tamasiga & Helen Onyeaka & Adenike Akinsemolu & Malebogo Bakwena, 2023. "The Inter-Relationship between Climate Change, Inequality, Poverty and Food Security in Africa: A Bibliometric Review and Content Analysis Approach," Sustainability, MDPI, vol. 15(7), pages 1-35, March.
    5. Wei Wang & Dechao Ma & Fengzhi Wu & Mengxin Sun & Shuangqing Xu & Qiuyue Hua & Ziyuan Sun, 2023. "Exploring the Knowledge Structure and Hotspot Evolution of Greenwashing: A Visual Analysis Based on Bibliometrics," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    6. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    7. Du, Minzhe & Wu, Fenger & Ye, Danfeng & Zhao, Yating & Liao, Liping, 2023. "Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 124(C).
    8. Patten, Bernard C., 2016. "Systems ecology and environmentalism: Getting the science right. Part II: The Janus Enigma Hypothesis," Ecological Modelling, Elsevier, vol. 335(C), pages 101-138.
    9. Albérico Travassos Rosário & Joana Carmo Dias, 2023. "The New Digital Economy and Sustainability: Challenges and Opportunities," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    10. Feng, Huchen & Hu, Yu-Jie & Li, Chengjiang & Wang, Honglei, 2023. "Rolling horizon optimisation strategy and initial carbon allowance allocation model to reduce carbon emissions in the power industry: Case of China," Energy, Elsevier, vol. 277(C).
    11. Leizhou Zhu & Yaping Huang, 2022. "Multi-Scenario Simulation of Ecosystem Service Value in Wuhan Metropolitan Area Based on PLUS-GMOP Model," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    12. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    13. Jinbo Guo & Jianhui Xue & Jianfeng Hua & Lei Xuan & Yunlong Yin, 2022. "Research Status and Trends of Underwater Photosynthesis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    14. Mengyao Liu & Hongli Jiang, 2022. "Can the Energy-Consumption Permit Trading Scheme Curb SO 2 Emissions? Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    15. Xiufan Zhang & Decheng Fan, 2022. "The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism," Sustainability, MDPI, vol. 14(12), pages 1-29, June.
    16. Ratna Malisa Indriawati & Evi Gravitiani & Albertus Maqnus Soesilo & Malik Cahyadin, 2023. "Long-Term Investigation of Emissions and Economic Growth in Developed and Developing Countries: A Bibliometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 219-234, May.
    17. Tianyu Luo & Hongmin Chen, 2023. "A Comparative Analysis of Separate and Joint Environmental Rights Trading Markets in China," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    18. Xiang-Yi Ma & Yi-Fan Xu & Qian Sun & Wen-Jun Liu & Wei Qi, 2024. "Contributing to Carbon Neutrality Targets: A Scenario Simulation and Pattern Optimization of Land Use in Shandong Province Based on the PLUS Model," Sustainability, MDPI, vol. 16(12), pages 1-24, June.
    19. Kristia Kristia & Sándor Kovács & Zoltán Bács & Mohammad Fazle Rabbi, 2023. "A Bibliometric Analysis of Sustainable Food Consumption: Historical Evolution, Dominant Topics and Trends," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    20. Liu, Gengyuan & Du, Shupan & Gao, Yuan & Xiong, Xiaoping & Lombardi, Ginevra Virginia & Meng, Fanxin & Chen, Yu & Chen, Caocao, 2024. "A study on energy-water-food-carbon nexus in typical Chinese northern rural households," Energy Policy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:165-:d:1024651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.