IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v242y2012icp180-188.html
   My bibliography  Save this article

Extending ecological network analysis measures to dynamic ecosystem models

Author

Listed:
  • Kazanci, C.
  • Ma, Q.

Abstract

Ecological network analysis measures such as cycling index, indirect effects, and storage analysis provide insightful information on ecosystem organization and function, which can be extremely useful for environmental management and control. These system-wide measures focus on indirect relations among system compartments, providing a holistic approach. Unfortunately, the application of these useful measures are restricted to steady state models. Seasonal changes, environmental impacts, and climate shifts are not accommodated by the current methodology, which greatly limits their application. The novel methodology introduced in this paper extends the application of these useful but limited measures to dynamic compartmental models. This method relies on network particle tracking simulation, which is an agent based algorithm, whereas the current methods utilize steady-state flow rates and compartment storage values. We apply this new methodology to storage analysis, which quantifies how much storage is generated at any compartment within the system by a unit external input into another compartment. Also called compartmental mean residence time, this measure is widely used in environmental sciences, pharmacokinetics and nutrition, to assess the interaction between system boundary (e.g. drug intake, pollution, feeding) and internal compartments (e.g. tissues, crops, species). Storage analysis is chosen for demonstration because it is applicable to a limited class of dynamic models (linear and donor-controlled), which gives us an opportunity to verify our new method. The methodology introduced here is also applicable to Finn's cycling index, indirect effects index, throughflow analysis, and possibly other network analysis based indicators as well.

Suggested Citation

  • Kazanci, C. & Ma, Q., 2012. "Extending ecological network analysis measures to dynamic ecosystem models," Ecological Modelling, Elsevier, vol. 242(C), pages 180-188.
  • Handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:180-188
    DOI: 10.1016/j.ecolmodel.2012.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012002426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matamba, L. & Kazanci, C. & Schramski, J.R. & Blessing, M. & Alexander, P. & Patten, B.C., 2009. "Throughflow analysis: A stochastic approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3174-3181.
    2. Shevtsov, Jane & Kazanci, Caner & Patten, Bernard C., 2009. "Dynamic environ analysis of compartmental systems: A computational approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3219-3224.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    4. Tollner, Ernest W. & Kazanci, Caner, 2007. "Defining an ecological thermodynamics using discrete simulation approaches," Ecological Modelling, Elsevier, vol. 208(1), pages 68-79.
    5. Kazanci, C. & Matamba, L. & Tollner, E.W., 2009. "Cycling in ecosystems: An individual based approach," Ecological Modelling, Elsevier, vol. 220(21), pages 2908-2914.
    6. Kazancı, Caner, 2007. "EcoNet: A new software for ecological modeling, simulation and network analysis," Ecological Modelling, Elsevier, vol. 208(1), pages 3-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coskun, Huseyin, 2018. "Dynamic Ecological System Analysis," OSF Preprints 35xkb, Center for Open Science.
    2. Burns, Thomas P. & Rose, Kenneth A. & Brenkert, Antoinette L., 2014. "Quantifying direct and indirect effects of perturbations using model ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 69-80.
    3. Varga, M. & Csukas, B., 2017. "Generation of extensible ecosystem models from a network structure and from locally executable programs," Ecological Modelling, Elsevier, vol. 364(C), pages 25-41.
    4. Jørgensen, Sven E. & Nielsen, Søren Nors & Fath, Brian D., 2016. "Recent progress in systems ecology," Ecological Modelling, Elsevier, vol. 319(C), pages 112-118.
    5. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    6. Shibao Lu & Xiaoling Zhang & Yao Tang, 2020. "Evolutionary analysis on structural characteristics of water resource system in basins of Northern China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 800-812, July.
    7. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    8. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
    2. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    3. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    4. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.
    5. Patten, Bernard C., 2015. "Link tracking: Quantifying network flows from qualitative node–link digraphs," Ecological Modelling, Elsevier, vol. 295(C), pages 47-58.
    6. Tollner, E.W. & Schramski, J.R. & Kazanci, C. & Patten, B.C., 2009. "Implications of network particle tracking (NPT) for ecological model interpretation," Ecological Modelling, Elsevier, vol. 220(16), pages 1904-1912.
    7. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    8. Coskun, Huseyin, 2018. "Dynamic Ecological System Analysis," OSF Preprints 35xkb, Center for Open Science.
    9. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    10. Buzhdygan, Oksana Y. & Patten, Bernard C. & Kazanci, Caner & Ma, Qianqian & Rudenko, Svitlana S., 2012. "Dynamical and system-wide properties of linear flow-quantified food webs," Ecological Modelling, Elsevier, vol. 245(C), pages 176-184.
    11. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    12. J. Garcia-Algarra & J. M. Pastor & M. L. Mouronte & J. Galeano, 2018. "A Structural Approach to Disentangle the Visualization of Bipartite Biological Networks," Complexity, Hindawi, vol. 2018, pages 1-11, February.
    13. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    14. Matamba, L. & Kazanci, C. & Schramski, J.R. & Blessing, M. & Alexander, P. & Patten, B.C., 2009. "Throughflow analysis: A stochastic approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3174-3181.
    15. Varga, M. & Csukas, B., 2017. "Generation of extensible ecosystem models from a network structure and from locally executable programs," Ecological Modelling, Elsevier, vol. 364(C), pages 25-41.
    16. Kazanci, C. & Matamba, L. & Tollner, E.W., 2009. "Cycling in ecosystems: An individual based approach," Ecological Modelling, Elsevier, vol. 220(21), pages 2908-2914.
    17. Jørgensen, S.E. & Nielsen, S.N., 2015. "Hierarchical networks," Ecological Modelling, Elsevier, vol. 295(C), pages 59-65.
    18. Rodríguez, Ricardo A. & Herrera, Ada Ma. & Riera, Rodrigo & Delgado, Juan D. & Quirós, Ángel & Perdomo, María E. & Santander, Jacobo & Miranda, Jezahel V. & Fernández-Rodríguez, María J. & Jiménez-Rod, 2015. "Thermostatistical distribution of a trophic energy proxy with analytical consequences for evolutionary ecology, species coexistence and the maximum entropy formalism," Ecological Modelling, Elsevier, vol. 296(C), pages 24-35.
    19. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    20. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:180-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.