IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/35xkb.html
   My bibliography  Save this paper

Dynamic Ecological System Analysis

Author

Listed:
  • Coskun, Huseyin

Abstract

This article develops a new mathematical method for holistic analysis of nonlinear dynamic compartmental systems through the system decomposition theory. The method is based on the novel dynamic system and subsystem partitioning methodologies through which compartmental systems are decomposed to the utmost level. The dynamic system and subsystem partitioning enable tracking the evolution of the initial stocks, environmental inputs, and intercompartmental system flows, as well as the associated storages derived from these stocks, inputs, and flows individually and separately within the system. Moreover, the transient and the dynamic direct, indirect, acyclic, cycling, and transfer (diact) flows and associated storages transmitted along a given flow path or from one compartment, directly or indirectly, to any other are analytically characterized, systematically classified, and mathematically formulated. Further, the article develops a dynamic technique based on the diact transactions for the quantitative classification of interspecific interactions and the determination of their strength within food webs. Major concepts and quantities of the current static network analyses are also extended to nonlinear dynamic settings and integrated with the proposed dynamic measures and indices within the proposed unifying mathematical framework. Therefore, the proposed methodology enables a holistic view and analysis of ecological systems. We consider that this methodology brings a novel complex system theory to the service of urgent and challenging environmental problems of the day and has the potential to lead the way to a more formalistic ecological science.

Suggested Citation

  • Coskun, Huseyin, 2018. "Dynamic Ecological System Analysis," OSF Preprints 35xkb, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:35xkb
    DOI: 10.31219/osf.io/35xkb
    as

    Download full text from publisher

    File URL: https://osf.io/download/5bfdfb9499e13c0019e78735/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/35xkb?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tollner, E.W. & Schramski, J.R. & Kazanci, C. & Patten, B.C., 2009. "Implications of network particle tracking (NPT) for ecological model interpretation," Ecological Modelling, Elsevier, vol. 220(16), pages 1904-1912.
    2. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    3. Kazanci, C. & Ma, Q., 2012. "Extending ecological network analysis measures to dynamic ecosystem models," Ecological Modelling, Elsevier, vol. 242(C), pages 180-188.
    4. Reid Bailey & Bert Bras & Janet K. Allen, 2004. "Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part II: Flow Metrics," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 69-91, January.
    5. Kazanci, C. & Matamba, L. & Tollner, E.W., 2009. "Cycling in ecosystems: An individual based approach," Ecological Modelling, Elsevier, vol. 220(21), pages 2908-2914.
    6. Allen, Timothy & Giampietro, Mario, 2014. "Holons, creaons, genons, environs, in hierarchy theory: Where we have gone," Ecological Modelling, Elsevier, vol. 293(C), pages 31-41.
    7. Shevtsov, Jane & Kazanci, Caner & Patten, Bernard C., 2009. "Dynamic environ analysis of compartmental systems: A computational approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3219-3224.
    8. Reid Bailey & Janet K. Allen & Bert Bras, 2004. "Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 45-68, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.
    2. Coskun, Huseyin, 2018. "Static Ecological System Measures," OSF Preprints g4xzt, Center for Open Science.
    3. Coskun, Huseyin, 2018. "Dynamic Ecological System Measures," OSF Preprints j2pd3, Center for Open Science.
    4. Coskun, Huseyin, 2018. "Static Ecological System Analysis," OSF Preprints zqxc5, Center for Open Science.
    5. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    6. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    7. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    8. Burns, Thomas P. & Rose, Kenneth A. & Brenkert, Antoinette L., 2014. "Quantifying direct and indirect effects of perturbations using model ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 69-80.
    9. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    10. Figge, Frank & Thorpe, Andrea Stevenson & Good, Jason, 2021. "Us before me: A group level approach to the circular economy," Ecological Economics, Elsevier, vol. 179(C).
    11. Lu Liu & Jinhua Li & Zhibin Jia & Jing Liu, 2022. "Industrial metabolism analysis of a Chinese wine industry chain based on material flow and input–output analyses," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 448-461, April.
    12. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    13. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    14. Shyamal Gondkar & Sivakumar Sreeramagiri & Edwin Zondervan, 2012. "Methodology for Assessment and Optimization of Industrial Eco-Systems," Challenges, MDPI, vol. 3(1), pages 1-21, June.
    15. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    16. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    17. Anna Schulte & Daniel Maga & Nils Thonemann, 2021. "Combining Life Cycle Assessment and Circularity Assessment to Analyze Environmental Impacts of the Medical Remanufacturing of Electrophysiology Catheters," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    18. Hashimoto, Seiji & Daigo, Ichiro & Eckelman, Matthew & Reck, Barbara, 2010. "Measuring the status of stainless steel use in the Japanese socio-economic system," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 737-743.
    19. Figge, Frank & Thorpe, Andrea Stevenson & Givry, Philippe & Canning, Louise & Franklin-Johnson, Elizabeth, 2018. "Longevity and Circularity as Indicators of Eco-Efficient Resource Use in the Circular Economy," Ecological Economics, Elsevier, vol. 150(C), pages 297-306.
    20. Bailey, Reid & Bras, Bert & Allen, Janet K., 2008. "Measuring material cycling in industrial systems," Resources, Conservation & Recycling, Elsevier, vol. 52(4), pages 643-652.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:35xkb. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.