IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i16p2945-2972.html
   My bibliography  Save this article

Ecosystems emerging. 5: Constraints

Author

Listed:
  • Patten, Bernard C.
  • Straškraba, Milan
  • Jørgensen, Sven E.

Abstract

Ecosystem constraints are both ontic and epistemic. They limit activity, and as problems to be solved they drive organization, which is our hypothesis:The driver of organization is constraint.

Suggested Citation

  • Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2945-2972
    DOI: 10.1016/j.ecolmodel.2011.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011002274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fath, Brian D., 2007. "Network mutualism: Positive community-level relations in ecosystems," Ecological Modelling, Elsevier, vol. 208(1), pages 56-67.
    2. Matamba, L. & Kazanci, C. & Schramski, J.R. & Blessing, M. & Alexander, P. & Patten, B.C., 2009. "Throughflow analysis: A stochastic approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3174-3181.
    3. Tollner, Ernest W. & Kazanci, Caner, 2007. "Defining an ecological thermodynamics using discrete simulation approaches," Ecological Modelling, Elsevier, vol. 208(1), pages 68-79.
    4. Kazanci, C. & Matamba, L. & Tollner, E.W., 2009. "Cycling in ecosystems: An individual based approach," Ecological Modelling, Elsevier, vol. 220(21), pages 2908-2914.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fath, Brian D., 2014. "Sustainable systems promote wholeness-extending transformations: The contributions of systems thinking," Ecological Modelling, Elsevier, vol. 293(C), pages 42-48.
    2. Patten, Bernard C., 2016. "Systems ecology and environmentalism: Getting the science right. Part II: The Janus Enigma Hypothesis," Ecological Modelling, Elsevier, vol. 335(C), pages 101-138.
    3. Patten, Bernard C., 2015. "Link tracking: Quantifying network flows from qualitative node–link digraphs," Ecological Modelling, Elsevier, vol. 295(C), pages 47-58.
    4. Patten, Bernard C., 2014. "Systems ecology and environmentalism: Getting the science right. Part I: Facets for a more holistic Nature Book of ecology," Ecological Modelling, Elsevier, vol. 293(C), pages 4-21.
    5. Straškraba, Milan & Jørgensen, Sven E. & Patten, Bernard C., 2014. "Ecosystems emerging: 6. Differentiation," Ecological Modelling, Elsevier, vol. 278(C), pages 29-51.
    6. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    2. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.
    3. Kazanci, C. & Ma, Q., 2012. "Extending ecological network analysis measures to dynamic ecosystem models," Ecological Modelling, Elsevier, vol. 242(C), pages 180-188.
    4. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    5. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    6. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    7. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    8. Rodríguez, Ricardo A. & Herrera, Ada Ma. & Riera, Rodrigo & Delgado, Juan D. & Quirós, Ángel & Perdomo, María E. & Santander, Jacobo & Miranda, Jezahel V. & Fernández-Rodríguez, María J. & Jiménez-Rod, 2015. "Thermostatistical distribution of a trophic energy proxy with analytical consequences for evolutionary ecology, species coexistence and the maximum entropy formalism," Ecological Modelling, Elsevier, vol. 296(C), pages 24-35.
    9. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    10. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    11. Mingqi Zhang & Meirong Su & Weiwei Lu & Chunhua Su, 2015. "An Assessment of the Security of China’s Natural Gas Supply System Using Two Network Models," Energies, MDPI, vol. 8(12), pages 1-16, December.
    12. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    13. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    14. Patten, Bernard C., 2015. "Link tracking: Quantifying network flows from qualitative node–link digraphs," Ecological Modelling, Elsevier, vol. 295(C), pages 47-58.
    15. Zhang, Yan & Li, Shengsheng & Fath, Brian D. & Yang, Zhifeng & Yang, Naijin, 2011. "Analysis of an urban energy metabolic system: Comparison of simple and complex model results," Ecological Modelling, Elsevier, vol. 223(1), pages 14-19.
    16. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    17. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    18. María Jesús Ávila-Gutiérrez & Alejandro Martín-Gómez & Francisco Aguayo-González & Juan Ramón Lama-Ruiz, 2020. "Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain towards Digital Transition," Sustainability, MDPI, vol. 12(5), pages 1-32, March.
    19. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.
    20. Tollner, E.W. & Schramski, J.R. & Kazanci, C. & Patten, B.C., 2009. "Implications of network particle tracking (NPT) for ecological model interpretation," Ecological Modelling, Elsevier, vol. 220(16), pages 1904-1912.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2945-2972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.