IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130326.html
   My bibliography  Save this article

Bayesian Spatial NBDA for Diffusion Data with Home-Base Coordinates

Author

Listed:
  • Glenna F Nightingale
  • Kevin N Laland
  • William Hoppitt
  • Peter Nightingale

Abstract

Network-based diffusion analysis (NBDA) is a statistical method that allows the researcher to identify and quantify a social influence on the spread of behaviour through a population. Hitherto, NBDA analyses have not directly modelled spatial population structure. Here we present a spatial extension of NBDA, applicable to diffusion data where the spatial locations of individuals in the population, or of their home bases or nest sites, are available. The method is based on the estimation of inter-individual associations (for association matrix construction) from the mean inter-point distances as represented on a spatial point pattern of individuals, nests or home bases. We illustrate the method using a simulated dataset, and show how environmental covariates (such as that obtained from a satellite image, or from direct observations in the study area) can also be included in the analysis. The analysis is conducted in a Bayesian framework, which has the advantage that prior knowledge of the rate at which the individuals acquire a given task can be incorporated into the analysis. This method is especially valuable for studies for which detailed spatially structured data, but no other association data, is available. Technological advances are making the collection of such data in the wild more feasible: for example, bio-logging facilitates the collection of a wide range of variables from animal populations in the wild. We provide an R package, spatialnbda, which is hosted on the Comprehensive R Archive Network (CRAN). This package facilitates the construction of association matrices with the spatial x and y coordinates as the input arguments, and spatial NBDA analyses.

Suggested Citation

  • Glenna F Nightingale & Kevin N Laland & William Hoppitt & Peter Nightingale, 2015. "Bayesian Spatial NBDA for Diffusion Data with Home-Base Coordinates," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0130326
    DOI: 10.1371/journal.pone.0130326
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130326
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130326&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Baddeley & M. Lieshout, 1995. "Area-interaction point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 601-619, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mason Youngblood, 2020. "Extremist ideology as a complex contagion: the spread of far-right radicalization in the United States between 2005 and 2017," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrari, Pablo A. & Fernández, Roberto & Garcia, Nancy L., 2002. "Perfect simulation for interacting point processes, loss networks and Ising models," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 63-88, November.
    2. Ahmed Ait Ameur & Hichem Elmossaoui & Nadia Oukid, 2024. "New Computer Experiment Designs with Area-Interaction Point Processes," Mathematics, MDPI, vol. 12(15), pages 1-17, July.
    3. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    4. Gregori, P. & van Lieshout, M. N. M. & Mateu, J., 2004. "Mixture formulae for shot noise weighted point processes," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 311-320, May.
    5. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    6. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    7. Grabarnik, Pavel & Särkkä, Aila, 2009. "Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions," Ecological Modelling, Elsevier, vol. 220(9), pages 1232-1240.
    8. Genet, Astrid & Grabarnik, Pavel & Sekretenko, Olga & Pothier, David, 2014. "Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry," Ecological Modelling, Elsevier, vol. 288(C), pages 143-154.
    9. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    10. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    11. David Dereudre & Frédéric Lavancier & Kateřina Staňková Helisová, 2014. "Estimation of the Intensity Parameter of the Germ-Grain Quermass-Interaction Model when the Number of Germs is not Observed," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 809-829, September.
    12. Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.