IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v251y2013icp54-63.html
   My bibliography  Save this article

A mass-balanced pelagic ecosystem model with size-structured behaviourally adaptive zooplankton and fish

Author

Listed:
  • Castellani, Marco
  • Rosland, Rune
  • Urtizberea, Agurtzane
  • Fiksen, Øyvind

Abstract

Mesozooplankton is a highly diverse group of organisms ranging from very small to large herbivorous, omnivorous or predatory forms. However, most aquatic ecosystem models typically contain only one or two state variables which represent all mesozooplankton forms and specify their role in marine food webs. We have extended an existing mass-balanced marine ecosystem model to include a wide range of mesozooplankton size-classes and species growing from small to large, and maturing at different size. The model includes a dynamic pool of fish with a fixed mortality rate as a closure term of the model, and mechanistic expressions for fish predation. The zooplankton consumes phytoplankton and smaller zooplankton, and responds adaptively to the instantaneous local rates of growth and predation by migrating towards more profitable habitats. We run the model for long time in a stable and repetitive diel light cycle, and explore the emerging ecosystem structure and complexity. In the stable environment the presence of fish has strong structuring effects over the size-structure of mesozooplankton, but little influence on phytoplankton because the total biomass of mesozooplankton remains relatively stable over the fish cycles. The inclusion of adaptive and flexible behaviour leads to emergent effects of multiple predators; the removal of intra-guild predation among zooplankton result in low fish abundance because zooplankton spend more time in deeper habitats. The model reveals persistent spatial and cascading behavioural interactions and is a step towards a mechanistic and adaptive representation of the upper trophic levels in ecosystem models.

Suggested Citation

  • Castellani, Marco & Rosland, Rune & Urtizberea, Agurtzane & Fiksen, Øyvind, 2013. "A mass-balanced pelagic ecosystem model with size-structured behaviourally adaptive zooplankton and fish," Ecological Modelling, Elsevier, vol. 251(C), pages 54-63.
  • Handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:54-63
    DOI: 10.1016/j.ecolmodel.2012.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001200573X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth T. Frank & Brian Petrie & Jonathan A. D. Fisher & William C. Leggett, 2011. "Transient dynamics of an altered large marine ecosystem," Nature, Nature, vol. 477(7362), pages 86-89, September.
    2. Prowe, A.E. Friederike & Pahlow, Markus & Oschlies, Andreas, 2012. "Controls on the diversity–productivity relationship in a marine ecosystem model," Ecological Modelling, Elsevier, vol. 225(C), pages 167-176.
    3. Clark, James R. & Daines, Stuart J. & Lenton, Timothy M. & Watson, Andrew J. & Williams, Hywel T.P., 2011. "Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters," Ecological Modelling, Elsevier, vol. 222(23), pages 3823-3837.
    4. Megrey, Bernard A. & Rose, Kenneth A. & Klumb, Robert A. & Hay, Douglas E. & Werner, Francisco E. & Eslinger, David L. & Smith, S. Lan, 2007. "A bioenergetics-based population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient–phytoplankton–zooplankton model: Description, calibration, and se," Ecological Modelling, Elsevier, vol. 202(1), pages 144-164.
    5. Merico, Agostino & Bruggeman, Jorn & Wirtz, Kai, 2009. "A trait-based approach for downscaling complexity in plankton ecosystem models," Ecological Modelling, Elsevier, vol. 220(21), pages 3001-3010.
    6. Baird, Mark E. & Suthers, Iain M., 2007. "A size-resolved pelagic ecosystem model," Ecological Modelling, Elsevier, vol. 203(3), pages 185-203.
    7. Werner, Francisco E. & Ito, Shin-Ichi & Megrey, Bernard A. & Kishi, Michio J., 2007. "Synthesis of the NEMURO model studies and future directions of marine ecosystem modeling," Ecological Modelling, Elsevier, vol. 202(1), pages 211-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sk Golam Mortoja & Prabir Panja & Shyamal Kumar Mondal, 2023. "Stability Analysis of Plankton–Fish Dynamics with Cannibalism Effect and Proportionate Harvesting on Fish," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    2. Sainmont, Julie & Andersen, Ken H. & Thygesen, Uffe H. & Fiksen, Øyvind & Visser, André W., 2015. "An effective algorithm for approximating adaptive behavior in seasonal environments," Ecological Modelling, Elsevier, vol. 311(C), pages 20-30.
    3. Zakharova, L. & Meyer, K.M. & Seifan, M., 2019. "Trait-based modelling in ecology: A review of two decades of research," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kearney, Kelly A. & Stock, Charles & Aydin, Kerim & Sarmiento, Jorge L., 2012. "Coupling planktonic ecosystem and fisheries food web models for a pelagic ecosystem: Description and validation for the subarctic Pacific," Ecological Modelling, Elsevier, vol. 237, pages 43-62.
    2. Kishi, Michio J. & Kashiwai, Makoto & Ware, Daniel M. & Megrey, Bernard A. & Eslinger, David L. & Werner, Francisco E. & Noguchi-Aita, Maki & Azumaya, Tomonori & Fujii, Masahiko & Hashimoto, Shinji & , 2007. "NEMURO—a lower trophic level model for the North Pacific marine ecosystem," Ecological Modelling, Elsevier, vol. 202(1), pages 12-25.
    3. Libralato, Simone & Solidoro, Cosimo, 2009. "Bridging biogeochemical and food web models for an End-to-End representation of marine ecosystem dynamics: The Venice lagoon case study," Ecological Modelling, Elsevier, vol. 220(21), pages 2960-2971.
    4. Pethybridge, H. & Roos, D. & Loizeau, V. & Pecquerie, L. & Bacher, C., 2013. "Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach," Ecological Modelling, Elsevier, vol. 250(C), pages 370-383.
    5. Gurkan, Zeren & Christensen, Asbjørn & Maar, Marie & Møller, Eva Friis & Madsen, Kristine Skovgaard & Munk, Peter & Mosegaard, Henrik, 2013. "Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic–biogeochemical model," Ecological Modelling, Elsevier, vol. 250(C), pages 294-306.
    6. Travers, M. & Shin, Y.-J. & Jennings, S. & Machu, E. & Huggett, J.A. & Field, J.G. & Cury, P.M., 2009. "Two-way coupling versus one-way forcing of plankton and fish models to predict ecosystem changes in the Benguela," Ecological Modelling, Elsevier, vol. 220(21), pages 3089-3099.
    7. Chen, Fei & Taylor, William D., 2011. "A model of phosphorus cycling in the epilimnion of oligotrophic and mesotrophic lakes," Ecological Modelling, Elsevier, vol. 222(5), pages 1103-1111.
    8. Gunnar Brandt & Agostino Merico & Björn Vollan & Achim Schlüter, 2012. "Human Adaptive Behavior in Common Pool Resource Systems," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-9, December.
    9. Yoshie, Naoki & Yamanaka, Yasuhiro & Rose, Kenneth A. & Eslinger, David L. & Ware, Daniel M. & Kishi, Michio J., 2007. "Parameter sensitivity study of the NEMURO lower trophic level marine ecosystem model," Ecological Modelling, Elsevier, vol. 202(1), pages 26-37.
    10. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
    11. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    12. Wan, Nian-Feng & Jiang, Jie-Xian & Li, Bo, 2014. "Modeling ecological two-sidedness for complex ecosystems," Ecological Modelling, Elsevier, vol. 287(C), pages 36-43.
    13. Hense, Inga & Beckmann, Aike, 2015. "A theoretical investigation of the diatom cell size reduction–restitution cycle," Ecological Modelling, Elsevier, vol. 317(C), pages 66-82.
    14. Batchelder, Harold P. & Kashiwai, Makoto, 2007. "Ecosystem modeling with NEMURO within the PICES Climate Change and Carrying Capacity program," Ecological Modelling, Elsevier, vol. 202(1), pages 7-11.
    15. Klauschies, Toni & Coutinho, Renato Mendes & Gaedke, Ursula, 2018. "A beta distribution-based moment closure enhances the reliability of trait-based aggregate models for natural populations and communities," Ecological Modelling, Elsevier, vol. 381(C), pages 46-77.
    16. Lei Zhao & Mingguo Wang & Zhongyao Liang & Qichao Zhou, 2020. "Identification of Regime Shifts and Their Potential Drivers in the Shallow Eutrophic Lake Yilong, Southwest China," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    17. Kakehi, Shigeho & Abo, Jun-ichi & Miyamoto, Hiroomi & Fuji, Taiki & Watanabe, Kazuyoshi & Yamashita, Hideyuki & Suyama, Satoshi, 2020. "Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model," Ecological Modelling, Elsevier, vol. 431(C).
    18. Hashioka, Taketo & Yamanaka, Yasuhiro, 2007. "Ecosystem change in the western North Pacific associated with global warming using 3D-NEMURO," Ecological Modelling, Elsevier, vol. 202(1), pages 95-104.
    19. Baird, Mark E. & Adams, Matthew P. & Babcock, Russell C. & Oubelkheir, Kadija & Mongin, Mathieu & Wild-Allen, Karen A. & Skerratt, Jennifer & Robson, Barbara J. & Petrou, Katherina & Ralph, Peter J. &, 2016. "A biophysical representation of seagrass growth for application in a complex shallow-water biogeochemical model," Ecological Modelling, Elsevier, vol. 325(C), pages 13-27.
    20. Rudi Voss & Martin F Quaas & Jörn O Schmidt & Olli Tahvonen & Martin Lindegren & Christian Möllmann, 2014. "Assessing Social – Ecological Trade-Offs to Advance Ecosystem-Based Fisheries Management," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-8, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:54-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.