IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3704-d353642.html
   My bibliography  Save this article

Identification of Regime Shifts and Their Potential Drivers in the Shallow Eutrophic Lake Yilong, Southwest China

Author

Listed:
  • Lei Zhao

    (School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
    Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China)

  • Mingguo Wang

    (Yunnan Institute of Surveying and Mapping of Geology and Mineral Resources, Kunming 650218, China)

  • Zhongyao Liang

    (Nanjing Innowater Environmental Technology Co. Ltd., Nanjing 210012, China)

  • Qichao Zhou

    (Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
    Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China)

Abstract

Regime shifts in shallow lakes can lead to great changes in ecosystem structures and functions, making ecosystem management more complicated. Lake Yilong, located in Yunnan Province, is one of the most eutrophic lakes in China. Although there is a high possibility that this lake has undergone regime shift one or more times, the presence of regime shifts and their drivers remain unknown. Here, we employed the sequential t -test analysis of regime shifts to detect the regime shifts based on the long-term (1989–2018) dataset of the lake. We further determined their potential drivers, and explored the nutrient thresholds of regime shifts and hysteresis. The results showed that during the testing period, three regime shifts occurred in 1996 (restorative type), 2009 (catastrophic type) and 2014 (restorative type). The potential key drivers for the first two regime shifts (1996 and 2009) were both related to aquaculture. The abolition of cage fish culture may have led to the restorative regime shift in 1996, and the stocking of crabs and excessive premature releasing of fry possibly caused the catastrophic regime shift in 2009. However, the third regime shift, which occurred in 2014, was possibly related to the drought and succedent hydration. These results indicate that adjustments of aquaculture strategy and hydrological conditions are critical for the lake ecosystem’s recovery. Moreover, the total phosphorus thresholds were identified to be lower than 0.046 mg/L (restorative type) and higher than 0.105 mg/L (catastrophic type), respectively. In addition, an obvious hysteresis was observed after 2014, suggesting that nutrient reduction is important for this lake’s management in the future.

Suggested Citation

  • Lei Zhao & Mingguo Wang & Zhongyao Liang & Qichao Zhou, 2020. "Identification of Regime Shifts and Their Potential Drivers in the Shallow Eutrophic Lake Yilong, Southwest China," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3704-:d:353642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Leeuwen, Edwin & Lacerot, Gissell & van Nes, Egbert H. & Hemerik, Lia & Scheffer, Marten, 2007. "Reduced top–down control of phytoplankton in warmer climates can be explained by continuous fish reproduction," Ecological Modelling, Elsevier, vol. 206(1), pages 205-212.
    2. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    3. Kenneth T. Frank & Brian Petrie & Jonathan A. D. Fisher & William C. Leggett, 2011. "Transient dynamics of an altered large marine ecosystem," Nature, Nature, vol. 477(7362), pages 86-89, September.
    4. Liang, Zhongyao & Wu, Sifeng & Chen, Huili & Yu, Yanhong & Liu, Yong, 2018. "A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton," Ecological Modelling, Elsevier, vol. 368(C), pages 404-410.
    5. Crépin, Anne-Sophie & Biggs, Reinette & Polasky, Stephen & Troell, Max & de Zeeuw, Aart, 2012. "Regime shifts and management," Ecological Economics, Elsevier, vol. 84(C), pages 15-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    3. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    4. Agnes B. Olin & Ulf Bergström & Örjan Bodin & Göran Sundblad & Britas Klemens Eriksson & Mårten Erlandsson & Ronny Fredriksson & Johan S. Eklöf, 2024. "Predation and spatial connectivity interact to shape ecosystem resilience to an ongoing regime shift," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    6. Michele Baggio, 2016. "Optimal Fishery Management with Regime Shifts: An Assessment of Harvesting Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 465-492, July.
    7. Baggio, Michele & Perrings, Charles, 2015. "Modeling adaptation in multi-state resource systems," Ecological Economics, Elsevier, vol. 116(C), pages 378-386.
    8. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    9. Strunz, Sebastian, 2014. "The German energy transition as a regime shift," Ecological Economics, Elsevier, vol. 100(C), pages 150-158.
    10. Shana M. Sundstrom & David G. Angeler & Ahjond S. Garmestani & Jorge H. García & Craig R. Allen, 2014. "Transdisciplinary Application of Cross-Scale Resilience," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    11. Pim Heijnen & Lammertjan Dam, 2019. "Catastrophe and Cooperation," Dynamic Games and Applications, Springer, vol. 9(1), pages 122-141, March.
    12. Trisha L Spanbauer & Craig R Allen & David G Angeler & Tarsha Eason & Sherilyn C Fritz & Ahjond S Garmestani & Kirsty L Nash & Jeffery R Stone, 2014. "Prolonged Instability Prior to a Regime Shift," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    13. Lindkvist, Emilie & Norberg, Jon, 2014. "Modeling experiential learning: The challenges posed by threshold dynamics for sustainable renewable resource management," Ecological Economics, Elsevier, vol. 104(C), pages 107-118.
    14. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    15. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    16. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    17. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    18. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    19. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    20. Maria Arvaniti & Chandra K. Krishnamurthy & Anne-Sophie Crépin, 2019. "Time-consistent resource management with regime shifts," CER-ETH Economics working paper series 19/329, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3704-:d:353642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.