IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v385y2018icp12-25.html
   My bibliography  Save this article

Inferring ecological processes from population signatures: A simulation-based heuristic for the selection of sampling strategies

Author

Listed:
  • Bellot, Benoit
  • Poggi, Sylvain
  • Baudry, Jacques
  • Bourhis, Yoann
  • Parisey, Nicolas

Abstract

A good knowledge about species traits variability in relation to their environment is the cornerstone of landscape-oriented species management studies. One way to infer this relationship is to compare species signatures in space and time from field data with spatially explicit population dynamics models outputs. However, the inference robustness relies on the available field data, and thus on the quality of the underlying sampling strategy. Field sampling is constrained by several factors, such as the number of landscape replicates, possible number of temporal sessions and number of sample locations, that need to be accounted for prior to field sampling. We set and illustrate a heuristic method to answer the question of optimal sampling conditioned by these landscape-induced constraints. First we studied a real agricultural landscape to determine its mean properties in terms of configuration and composition. The real landscape properties were used as constraints in a landscape model to generate a collection of landscapes with similar properties. On the other hand, we formulated population dynamics models (hereafter noted Process Models (PM)) carrying competing hypotheses about two ecological processes—population growth and dispersal—in relation to spatial covariates for Pterostichus melanarius, a carabid species involved in pest regulation. We simulated these spatially explicit models and extracted their sampling-dependent signatures, i.e. metrics computed on different population samples. We defined a sampling design quality as its ability to capture the contrasts between the PM signatures, summarised by the performance of a classification procedure. The most relevant sampling design was selected on the basis of classification performance and in situ feasibility. Finally we explored the effects of the a priori ecological hypotheses quality on classification performances, through a sensitivity analysis of the PM parameters. While some improvements remain to be achieved before being fully operational for landscape ecologists, our framework contributes to bringing closer sampling theory and its application on the field. It endorses the use of landscape modelling to design sampling prior to field experiment to bring out the best from sampled data.

Suggested Citation

  • Bellot, Benoit & Poggi, Sylvain & Baudry, Jacques & Bourhis, Yoann & Parisey, Nicolas, 2018. "Inferring ecological processes from population signatures: A simulation-based heuristic for the selection of sampling strategies," Ecological Modelling, Elsevier, vol. 385(C), pages 12-25.
  • Handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:12-25
    DOI: 10.1016/j.ecolmodel.2018.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001830214X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    2. Le Ber, F. & Lavigne, C. & Adamczyk, K. & Angevin, F. & Colbach, N. & Mari, J.-F. & Monod, H., 2009. "Neutral modelling of agricultural landscapes by tessellation methods—Application for gene flow simulation," Ecological Modelling, Elsevier, vol. 220(24), pages 3536-3545.
    3. Andrew J Edelman, 2012. "Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    4. Gaucherel, C., 2008. "Neutral models for polygonal landscapes with linear networks," Ecological Modelling, Elsevier, vol. 219(1), pages 39-48.
    5. Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Le Cointe, Ronan & Cortesero, Anne-Marie & Parisey, Nicolas, 2017. "Foraging as the landscape grip for population dynamics—A mechanistic model applied to crop protection," Ecological Modelling, Elsevier, vol. 354(C), pages 26-36.
    6. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    7. Savage, David & Renton, Michael, 2014. "Requirements, design and implementation of a general model of biological invasion," Ecological Modelling, Elsevier, vol. 272(C), pages 394-409.
    8. Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Cortesero, Anne-Marie & Le Ralec, Anne & Parisey, Nicolas, 2015. "Perception-based foraging for competing resources: Assessing pest population dynamics at the landscape scale from heterogeneous resource distribution," Ecological Modelling, Elsevier, vol. 312(C), pages 211-221.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinatier, F. & Chauvet, M., 2017. "A neutral model for the simulation of linear networks in territories," Ecological Modelling, Elsevier, vol. 363(C), pages 8-16.
    2. Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Le Cointe, Ronan & Cortesero, Anne-Marie & Parisey, Nicolas, 2017. "Foraging as the landscape grip for population dynamics—A mechanistic model applied to crop protection," Ecological Modelling, Elsevier, vol. 354(C), pages 26-36.
    3. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.
    4. Poggi, Sylvain & Sergent, Mike & Mammeri, Youcef & Plantegenest, Manuel & Le Cointe, Ronan & Bourhis, Yoann, 2021. "Dynamic role of grasslands as sources of soil-dwelling insect pests: New insights from in silico experiments for pest management strategies," Ecological Modelling, Elsevier, vol. 440(C).
    5. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    6. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    7. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    9. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    10. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    11. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    12. Paolo Veneri, 2018. "Urban spatial structure in OECD cities: Is urban population decentralising or clustering?," Papers in Regional Science, Wiley Blackwell, vol. 97(4), pages 1355-1374, November.
    13. Schwemmer, Philipp & Güpner, Franziska & Adler, Sven & Klingbeil, Knut & Garthe, Stefan, 2016. "Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors," Ecological Modelling, Elsevier, vol. 320(C), pages 322-333.
    14. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    15. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    16. Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.
    17. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    19. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    20. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:12-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.