IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i14d10.1007_s11269-016-1500-x.html
   My bibliography  Save this article

A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale

Author

Listed:
  • Md Jahangir Alam

    (University of Southern Queensland)

  • Dushmanta Dutta

    (CSIRO Land and Water)

Abstract

The prediction of nutrient pollution at realistic details is difficult due to lack of proper description of inherent processes in modelling tools. To overcome that this study has adopted a process based approach to build a semi-distributed model to simulate nutrient pollution in changing environment. The model was built to describe: (1) nutrient generation process in the catchment with consideration of different aspects of external and internal sources, (2) nutrient release from surface to the waterways via runoff and soil erosion, and (3) in-stream transport and chemical reaction process. The key novelty of this research is the linking of the nutrient generation process with transport mechanism for modelling nutrient dynamics at a basin scale. A flow capacity based approach was introduced to determine nutrient export from catchment to the waterways, which was useful to achieve the high resolution outputs from the model. The model performed reasonably well to represent the behaviour of nutrient in high flow events as well as in seasonal flow in two catchments located in distinct hydro-climatic regions. The study has shown that the nutrient model is suitable for predicting actual nutrient pollution in rivers for both high flow and seasonal flow under different hydro-climatic conditions. By simulating organic and inorganic nutrients separately, the model allows to estimate river water quality status in detail.

Suggested Citation

  • Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1500-x
    DOI: 10.1007/s11269-016-1500-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1500-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1500-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagenschein, Dierk & Rode, Michael, 2008. "Modelling the impact of river morphology on nitrogen retention—A case study of the Weisse Elster River (Germany)," Ecological Modelling, Elsevier, vol. 211(1), pages 224-232.
    2. Wu, Guozheng & Xu, Zongxue, 2011. "Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake," Ecological Modelling, Elsevier, vol. 222(6), pages 1245-1252.
    3. Yiannis Panagopoulos & Christos Makropoulos & Maria Mimikou, 2011. "Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3635-3660, November.
    4. Jones, C. A. & Dyke, P. T. & Williams, J. R. & Kiniry, J. R. & Benson, V. W. & Griggs, R. H., 1991. "EPIC: An operational model for evaluation of agricultural sustainability," Agricultural Systems, Elsevier, vol. 37(4), pages 341-350.
    5. Rabin Bhattarai & Dushmata Dutta, 2007. "Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1635-1647, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    2. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    3. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    4. A. P. Moxey & B. White & R. A. Sanderson & S. P. Rushton, 1995. "An Approach To Linking An Ecological Vegetation Model To An Agricultural Economic Model," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(3), pages 381-397, September.
    5. Xiaosi Su & Huang Wang & Yuling Zhang, 2013. "Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3025-3034, June.
    6. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    7. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    8. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    9. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Islam, Md. Nazrul & Kitazawa, Daisuke & Kokuryo, Naoki & Tabeta, Shigeru & Honma, Takamitsu & Komatsu, Nobuyuki, 2012. "Numerical modeling on transition of dominant algae in Lake Kitaura, Japan," Ecological Modelling, Elsevier, vol. 242(C), pages 146-163.
    11. Lee, Ingyu & Hwang, Hyundong & Lee, Jungwoo & Yu, Nayoung & Yun, Jinhuck & Kim, Hyunook, 2017. "Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia," Ecological Modelling, Elsevier, vol. 353(C), pages 167-173.
    12. Ching-Nuo Chen & Chih-Heng Tsai & Chang-Tai Tsai, 2011. "Simulation of Runoff and Suspended Sediment Transport Rate in a Basin with Multiple Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 793-816, February.
    13. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    14. Vázquez-Montenegro, Ranses José & Durán-Zarabozo, Odil & Baca, Marcio, 2015. "Modelos de impacto en la agricultura teniendo en cuenta los escenarios de la agricultura del cambio climático," Revista Iberoamericana de Bioeconomía y Cambio Climàtico, National Autonomous University of Nicaragua, Leon, vol. 1(1), pages 1-50, July.
    15. Vaibhav Garg & V. Jothiprakash, 2012. "Sediment Yield Assessment of a Large Basin using PSIAC Approach in GIS Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 799-840, February.
    16. M. Naik & E. Rao & T. Eldho, 2009. "Finite Element Method and GIS Based Distributed Model for Soil Erosion and Sediment Yield in a Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 553-579, February.
    17. Wellington de Azambuja Magalhães & Ricardo Santos Silva Amorim & Maria O’Healy Hunter & Edwaldo Dias Bocuti & Luis Augusto Di Loreto Di Raimo & Wininton Mendes da Silva & Aaron Kinyu Hoshide & Daniel , 2023. "Using the GeoWEPP Model to Predict Water Erosion in Micro-Watersheds in the Brazilian Cerrado," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    18. Chen, Bokun & Yang, Siyu & Cao, Qi & Qian, Yu, 2020. "Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse?," Energy Policy, Elsevier, vol. 137(C).
    19. Bernd Klauer & Michael Rode & Johannes Schiller & Uwe Franko & Melanie Mewes, 2012. "Decision Support for the Selection of Measures according to the Requirements of the EU Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 775-798, February.
    20. Amit Kumar & Mamta Devi & Benidhar Deshmukh, 2014. "Integrated Remote Sensing and Geographic Information System Based RUSLE Modelling for Estimation of Soil Loss in Western Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3307-3317, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1500-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.