IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v293y2014icp69-80.html
   My bibliography  Save this article

Quantifying direct and indirect effects of perturbations using model ecosystems

Author

Listed:
  • Burns, Thomas P.
  • Rose, Kenneth A.
  • Brenkert, Antoinette L.

Abstract

Indirect effects in ecosystems in response to perturbations remain a topic of much discussion. We continue on the theoretical path set by Nakajima and Higashi (1995, Indirect effects in ecological interaction networks (II): the conjugate variable approach. Mathematical Biosciences 130, 129–150) and extend their approach for quantifying indirect effects of press perturbations under steady-state conditions to pulse perturbations in steady state and to press and pulse perturbations under time-varying conditions. We illustrate with a commonly used lake ecosystem model how to estimate total, direct, and indirect effects on one species’ biomass (e.g., game fish) from perturbations to a second species (e.g., forage fish). We use the daily output of species biomasses from multi-year model simulations to test whether the computed total, direct, and indirect effects are equal for pulse and press perturbations of equal magnitude, and whether the types (pulse and press) and timing of perturbations alter the relative importance of indirect effects. Our results were consistent with the original theory of Nakajima and Higashi; under steady-state conditions, press and pulse perturbations to the forage fish produced similar effects on the game fish. Under these same conditions, indirect effects on the game fish were more than 3.5 times larger than the direct effects. Under time-varying conditions, all classes of pulse effects, but not press, depended on the day the perturbation was imposed. Indirect effects of pulse and press perturbations under time-varying conditions were always negative (offsetting) and of similar magnitude as the direct effects. When forage fish biomass was growing rapidly, the indirect effect on game fish biomass of a pulse perturbation was relatively smaller compared to the direct effect, whereas the indirect and direct effects were similar at other times. We consider the general implications of these results for the analysis of natural ecosystems.

Suggested Citation

  • Burns, Thomas P. & Rose, Kenneth A. & Brenkert, Antoinette L., 2014. "Quantifying direct and indirect effects of perturbations using model ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 69-80.
  • Handle: RePEc:eee:ecomod:v:293:y:2014:i:c:p:69-80
    DOI: 10.1016/j.ecolmodel.2013.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014000027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    2. Tollner, E.W. & Schramski, J.R. & Kazanci, C. & Patten, B.C., 2009. "Implications of network particle tracking (NPT) for ecological model interpretation," Ecological Modelling, Elsevier, vol. 220(16), pages 1904-1912.
    3. Kazanci, C. & Ma, Q., 2012. "Extending ecological network analysis measures to dynamic ecosystem models," Ecological Modelling, Elsevier, vol. 242(C), pages 180-188.
    4. Buzhdygan, Oksana Y. & Patten, Bernard C. & Kazanci, Caner & Ma, Qianqian & Rudenko, Svitlana S., 2012. "Dynamical and system-wide properties of linear flow-quantified food webs," Ecological Modelling, Elsevier, vol. 245(C), pages 176-184.
    5. Salas, Andria K. & Borrett, Stuart R., 2011. "Evidence for the dominance of indirect effects in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 222(5), pages 1192-1204.
    6. Baird, Dan & Fath, Brian D. & Ulanowicz, Robert E. & Asmus, Harald & Asmus, Ragnhild, 2009. "On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3465-3471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    2. Jørgensen, Sven E. & Nielsen, Søren Nors & Fath, Brian D., 2016. "Recent progress in systems ecology," Ecological Modelling, Elsevier, vol. 319(C), pages 112-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Coskun, Huseyin, 2018. "Dynamic Ecological System Analysis," OSF Preprints 35xkb, Center for Open Science.
    3. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    4. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    5. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.
    6. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.
    7. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    8. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    9. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    10. Jørgensen, Sven E. & Nielsen, Søren Nors & Fath, Brian D., 2016. "Recent progress in systems ecology," Ecological Modelling, Elsevier, vol. 319(C), pages 112-118.
    11. Buzhdygan, Oksana Y. & Rudenko, Svitlana S. & Kazanci, Caner & Patten, Bernard C., 2016. "Effect of invasive black locust (Robinia pseudoacacia L.) on nitrogen cycle in floodplain ecosystem," Ecological Modelling, Elsevier, vol. 319(C), pages 170-177.
    12. Mingqi Zhang & Meirong Su & Weiwei Lu & Chunhua Su, 2015. "An Assessment of the Security of China’s Natural Gas Supply System Using Two Network Models," Energies, MDPI, vol. 8(12), pages 1-16, December.
    13. Patten, Bernard C., 2015. "Link tracking: Quantifying network flows from qualitative node–link digraphs," Ecological Modelling, Elsevier, vol. 295(C), pages 47-58.
    14. Koo, Kyung Ah & Patten, Bernard C. & Teskey, Robert O. & Creed, Irena F., 2014. "Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range," Ecological Modelling, Elsevier, vol. 293(C), pages 81-90.
    15. Buzhdygan, O.Y. & Rudenko, S.S. & Patten, B.C. & Kostyshyn, S.S., 2014. "Food-web topology of Ukrainian mountain grasslands: Comparative properties and relations to ecosystem parameters," Ecological Modelling, Elsevier, vol. 293(C), pages 128-138.
    16. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    17. Hines, David E. & Borrett, Stuart R., 2014. "A comparison of network, neighborhood, and node levels of analyses in two models of nitrogen cycling in the Cape Fear River Estuary," Ecological Modelling, Elsevier, vol. 293(C), pages 210-220.
    18. Xu, Wanying & Zhou, Chuanbin & Cao, Aixin & Luo, Min, 2016. "Understanding the mechanism of food waste management by using stakeholder analysis and social network model: An industrial ecology perspective," Ecological Modelling, Elsevier, vol. 337(C), pages 63-72.
    19. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    20. Coskun, Huseyin, 2018. "Static Ecological System Measures," OSF Preprints g4xzt, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:293:y:2014:i:c:p:69-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.