IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v135y2016i3d10.1007_s10584-015-1591-z.html
   My bibliography  Save this article

Habitat associations drive species vulnerability to climate change in boreal forests

Author

Listed:
  • Adriano Mazziotta

    (University of Copenhagen
    University of Jyvaskyla)

  • María Triviño

    (University of Jyvaskyla)

  • Olli-Pekka Tikkanen

    (Finnish Forest Research Institute
    University of Eastern Finland)

  • Jari Kouki

    (University of Eastern Finland)

  • Harri Strandman

    (University of Eastern Finland)

  • Mikko Mönkkönen

    (University of Jyvaskyla)

Abstract

Species climate change vulnerability, their predisposition to be adversely affected, has been assessed for a limited portion of biodiversity. Our knowledge of climate change impacts is often based only on exposure, the magnitude of climatic variation in the area occupied by the species, even if species sensitivity, the species ability to tolerate climatic variations determined by traits, plays a key role in determining vulnerability. We analyse the role of species’ habitat associations, a proxy for sensitivity, in explaining vulnerability for two poorly-known but species-rich taxa in boreal forest, saproxylic beetles and fungi, using three IPCC emissions scenarios. Towards the end of the 21st century we projected an improvement in habitat quality associated with an increase of deadwood, an important resource for species, as a consequence of increased tree growth under high emissions scenarios. However, climate change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-associated species. This loss is likely caused by future increase in timber extraction and decomposition rates causing higher deadwood turnover, which have a strong negative effect on boreal forest biodiversity. Our results are species- and scenario-specific. Diversified forest management and restoration ensuring deadwood resources in the landscape would allow the persistence of species whose capacity of delivering important supporting ecosystem services can be undermined by climate change.

Suggested Citation

  • Adriano Mazziotta & María Triviño & Olli-Pekka Tikkanen & Jari Kouki & Harri Strandman & Mikko Mönkkönen, 2016. "Habitat associations drive species vulnerability to climate change in boreal forests," Climatic Change, Springer, vol. 135(3), pages 585-595, April.
  • Handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1591-z
    DOI: 10.1007/s10584-015-1591-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-015-1591-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-015-1591-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louise Mair & Jane K. Hill & Richard Fox & Marc Botham & Tom Brereton & Chris D. Thomas, 2014. "Abundance changes and habitat availability drive species’ responses to climate change," Nature Climate Change, Nature, vol. 4(2), pages 127-131, February.
    2. Tuomi, M. & Laiho, R. & Repo, A. & Liski, J., 2011. "Wood decomposition model for boreal forests," Ecological Modelling, Elsevier, vol. 222(3), pages 709-718.
    3. Mark A. Bradford & Robert J. Warren II & Petr Baldrian & Thomas W. Crowther & Daniel S. Maynard & Emily E. Oldfield & William R. Wieder & Stephen A. Wood & Joshua R. King, 2014. "Climate fails to predict wood decomposition at regional scales," Nature Climate Change, Nature, vol. 4(7), pages 625-630, July.
    4. Luke Shoo & Ary Hoffmann & Stephen Garnett & Robert Pressey & Yvette Williams & Martin Taylor & Lorena Falconi & Colin Yates & John Scott & Diogo Alagador & Stephen Williams, 2013. "Making decisions to conserve species under climate change," Climatic Change, Springer, vol. 119(2), pages 239-246, July.
    5. Marko Ahteensuu & Sami Aikio & Pedro Cardoso & Marko Hyvärinen & Maria Hällfors & Susanna Lehvävirta & Leif Schulman & Elina Vaara, 2015. "Quantitative tools and simultaneous actions needed for species conservation under climate change–reply to Shoo et al. (2013)," Climatic Change, Springer, vol. 129(1), pages 1-7, March.
    6. D. A. Fordham & H. R. Akçakaya & B. W. Brook & A. Rodríguez & P. C. Alves & E. Civantos & M. Triviño & M. J. Watts & M. B. Araújo, 2013. "Adapted conservation measures are required to save the Iberian lynx in a changing climate," Nature Climate Change, Nature, vol. 3(10), pages 899-903, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    2. Floris M. Beest & Efrén López-Blanco & Lars H. Hansen & Niels M. Schmidt, 2023. "Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore," Climatic Change, Springer, vol. 176(4), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    2. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    3. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    4. Pliscoff, Patricio & Luebert, Federico & Hilger, Hartmut H. & Guisan, Antoine, 2014. "Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment," Ecological Modelling, Elsevier, vol. 288(C), pages 166-177.
    5. Didion, M. & Frey, B. & Rogiers, N. & Thürig, E., 2014. "Validating tree litter decomposition in the Yasso07 carbon model," Ecological Modelling, Elsevier, vol. 291(C), pages 58-68.
    6. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    7. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. James W. Pearce-Higgins & Patrick J. Lindley & Ian G. Johnstone & Reg I. Thorpe & David J.T. Douglas & Murray C. Grant, 2019. "Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change," Climatic Change, Springer, vol. 153(1), pages 253-265, March.
    9. Parkatti, Vesa-Pekka & Suominen, Antti & Tahvonen, Olli & Malo, Pekka, 2024. "Assessing economic benefits and costs of carbon sinks in boreal rotation forestry," Forest Policy and Economics, Elsevier, vol. 166(C).
    10. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    11. Marko Ahteensuu & Sami Aikio & Pedro Cardoso & Marko Hyvärinen & Maria Hällfors & Susanna Lehvävirta & Leif Schulman & Elina Vaara, 2015. "Quantitative tools and simultaneous actions needed for species conservation under climate change–reply to Shoo et al. (2013)," Climatic Change, Springer, vol. 129(1), pages 1-7, March.
    12. Linkosalo, Tapio & Kolari, Pasi & Pumpanen, Jukka, 2013. "New decomposition rate functions based on volumetric soil water content for the ROMUL soil organic matter dynamics model," Ecological Modelling, Elsevier, vol. 263(C), pages 109-118.
    13. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    14. Elias Hurmekoski & Tanja Myllyviita & Jyri Seppälä & Tero Heinonen & Antti Kilpeläinen & Timo Pukkala & Tuomas Mattila & Lauri Hetemäki & Antti Asikainen & Heli Peltola, 2020. "Impact of structural changes in wood‐using industries on net carbon emissions in Finland," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 899-912, August.
    15. Zhou, Mo, 2015. "Adapting sustainable forest management to climate policy uncertainty: A conceptual framework," Forest Policy and Economics, Elsevier, vol. 59(C), pages 66-74.
    16. Zisenis, Marcus, 2017. "Is the Natura 2000 network of the European Union the key land use policy tool for preserving Europe’s biodiversity heritage?," Land Use Policy, Elsevier, vol. 69(C), pages 408-416.
    17. Zubizarreta-Gerendiain, Ane & Pukkala, Timo & Peltola, Heli, 2016. "Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate: a Finnish case study," Forest Policy and Economics, Elsevier, vol. 62(C), pages 168-176.
    18. Heinonen, Tero & Pukkala, Timo & Mehtätalo, Lauri & Asikainen, Antti & Kangas, Jyrki & Peltola, Heli, 2017. "Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry," Forest Policy and Economics, Elsevier, vol. 80(C), pages 80-98.
    19. Eyvindson, Kyle & Duflot, Rémi & Triviño, María & Blattert, Clemens & Potterf, Mária & Mönkkönen, Mikko, 2021. "High boreal forest multifunctionality requires continuous cover forestry as a dominant management," Land Use Policy, Elsevier, vol. 100(C).
    20. Pelayo Acevedo & Alberto Jiménez-Valverde & Jorge M. Lobo & Raimundo Real, 2017. "Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change," Climatic Change, Springer, vol. 145(1), pages 131-143, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1591-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.