IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v216y2008i3p253-264.html
   My bibliography  Save this article

Estimates of species- and ecosystem-level respiration of woody stems along an elevational gradient in the Luquillo Mountains, Puerto Rico

Author

Listed:
  • Harris, Nancy L.
  • Hall, Charles A.S.
  • Lugo, Ariel E.

Abstract

We measured CO2 efflux from stems of seven subtropical tree species situated along an elevational gradient in the Luquillo Mountains, Puerto Rico and scaled these measurements up to the landscape level based on modeled and empirical relations. The most important determinants of ecosystem stem respiration were species composition and stem temperature. At a species scale, measured CO2 efflux per unit bole surface area at a given temperature was highest in the early successional species Cecropia schreberiana and lowest in species that inhabit high elevations such as Micropholis garciniifolia and Tabebuia rigida. Carbon dioxide efflux rates followed a diel pattern that lagged approximately 6h behind changes in sapwood temperatures. At an ecosystem scale, our simulation model indicates a decreasing trend of stem respiration rates with increasing elevation due to shifts in species composition, lower temperatures and reductions in branch surface area. The highest estimated stem respiration rates were present in the lowland tabonuco forest type and the lowest rates were present in the elfin forest type (mean 7.4 and 2.1MgCha−1yr−1, respectively). There was slight temperature-induced seasonal variation in simulated stem respiration rates at low elevations, with a maximum difference of 19% between the months of February and July. Our results coincide well with those of Odum and Jordan [Odum, H.T., Jordan, C.F., 1970. Metabolism and evapotranspiration of the lower forest in a giant plastic cylinder. In: Odum, H.T., Pigeon, R.F. (Eds.), A Tropical Rain Forest: A Study of Irradiation and Ecology at El Verde, Puerto Rico. U.S. Atomic Energy Commission, Oak Ridge, TN, pp. I165–I189] for the tabonuco forest type and extend their work by presenting estimates and spatial patterns of woody tissue respiration for the entire mountain rather than for a single forested plot.

Suggested Citation

  • Harris, Nancy L. & Hall, Charles A.S. & Lugo, Ariel E., 2008. "Estimates of species- and ecosystem-level respiration of woody stems along an elevational gradient in the Luquillo Mountains, Puerto Rico," Ecological Modelling, Elsevier, vol. 216(3), pages 253-264.
  • Handle: RePEc:eee:ecomod:v:216:y:2008:i:3:p:253-264
    DOI: 10.1016/j.ecolmodel.2008.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008002007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuomi, Mikko & Vanhala, Pekka & Karhu, Kristiina & Fritze, Hannu & Liski, Jari, 2008. "Heterotrophic soil respiration—Comparison of different models describing its temperature dependence," Ecological Modelling, Elsevier, vol. 211(1), pages 182-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grant, R.F., 2014. "Nitrogen mineralization drives the response of forest productivity to soil warming: Modelling in ecosys vs. measurements from the Harvard soil heating experiment," Ecological Modelling, Elsevier, vol. 288(C), pages 38-46.
    2. Bagnara, Maurizio & Van Oijen, Marcel & Cameron, David & Gianelle, Damiano & Magnani, Federico & Sottocornola, Matteo, 2018. "Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest," Ecological Modelling, Elsevier, vol. 371(C), pages 90-100.
    3. Fu, Yongshuo H. & Campioli, Matteo & Van Oijen, Marcel & Deckmyn, Gaby & Janssens, Ivan A., 2012. "Bayesian comparison of six different temperature-based budburst models for four temperate tree species," Ecological Modelling, Elsevier, vol. 230(C), pages 92-100.
    4. Tuomi, M. & Thum, T. & Järvinen, H. & Fronzek, S. & Berg, B. & Harmon, M. & Trofymow, J.A. & Sevanto, S. & Liski, J., 2009. "Leaf litter decomposition—Estimates of global variability based on Yasso07 model," Ecological Modelling, Elsevier, vol. 220(23), pages 3362-3371.
    5. Tuomi, M. & Laiho, R. & Repo, A. & Liski, J., 2011. "Wood decomposition model for boreal forests," Ecological Modelling, Elsevier, vol. 222(3), pages 709-718.
    6. Geoffrey Guest & Francesco Cherubini & Anders Strømman, 2013. "Climate impact potential of utilizing forest residues for bioenergy in Norway," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1089-1108, December.
    7. Yousefpour, Rasoul & You, Bin & Hanewinkel, Marc, 2019. "Simulation of extreme storm effects on regional forest soil carbon stock," Ecological Modelling, Elsevier, vol. 399(C), pages 39-53.
    8. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:216:y:2008:i:3:p:253-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.