IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v251y2013icp221-231.html
   My bibliography  Save this article

Soil organic carbon stock changes in Swedish forest soils—A comparison of uncertainties and their sources through a national inventory and two simulation models

Author

Listed:
  • Ortiz, Carina A.
  • Liski, Jari
  • Gärdenäs, Annemieke I.
  • Lehtonen, Aleksi
  • Lundblad, Mattias
  • Stendahl, Johan
  • Ågren, Göran I.
  • Karltun, Erik

Abstract

Swedish Forest Soil Inventory (SFSI) estimates of SOC stocks and SOC changes for forest on mineral soils under Scots pine (Pinus sylvestris)/lodgepole pine (Pinus contorta) or Norway spruce (Picea abies) were compared with estimates, including uncertainties due to parameter, input and climate variability, from two process-based models (Yasso07 and Q) for the period 1994–2000. We found that the stocks, changes, inter-annual variations and uncertainties were of the same magnitude among the different methods. The mean Swedish national stocks in 2000 were estimated to be 73 (±10) (95% CL)tonha−1C (SFSI); 69 (±9) (95% CL)tonha−1C (Yasso07); and, 67 (+10; −9) (5th and 95th percentiles)tonha−1C (Q). Between 1994 and 2000, the mean estimated SOC change were 6.6 (±7)TgCyr−1 (SFSI), 1.7 (±8.8)TgCyr−1 (Yasso07), and −3.2 (+10.5; −16.9)TgCyr−1 (Q). Spatial variability was the main source of uncertainty for the SOC stocks and changes estimated with the SFSI. The uncertainties in the stock estimates originated from litter input for Yasso07 and from the model parameters for the Q model. In both models, litter input uncertainty was the major source of uncertainty for the estimated SOC changes, followed by climate variability and parameters. We concluded that the level of uncertainty for both methods was similar but the sources of uncertainties varied between models and measurements. Thus, comparing uncertainty between methods is difficult and further studies on SOC change estimates with related uncertainties are warranted.

Suggested Citation

  • Ortiz, Carina A. & Liski, Jari & Gärdenäs, Annemieke I. & Lehtonen, Aleksi & Lundblad, Mattias & Stendahl, Johan & Ågren, Göran I. & Karltun, Erik, 2013. "Soil organic carbon stock changes in Swedish forest soils—A comparison of uncertainties and their sources through a national inventory and two simulation models," Ecological Modelling, Elsevier, vol. 251(C), pages 221-231.
  • Handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:221-231
    DOI: 10.1016/j.ecolmodel.2012.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuomi, M. & Thum, T. & Järvinen, H. & Fronzek, S. & Berg, B. & Harmon, M. & Trofymow, J.A. & Sevanto, S. & Liski, J., 2009. "Leaf litter decomposition—Estimates of global variability based on Yasso07 model," Ecological Modelling, Elsevier, vol. 220(23), pages 3362-3371.
    2. Ortiz, Carina & Karltun, Erik & Stendahl, Johan & Gärdenäs, Annemieke I. & Ågren, Göran I., 2011. "Modelling soil carbon development in Swedish coniferous forest soils—An uncertainty analysis of parameters and model estimates using the GLUE method," Ecological Modelling, Elsevier, vol. 222(17), pages 3020-3032.
    3. Juston, John & Andrén, Olof & Kätterer, Thomas & Jansson, Per-Erik, 2010. "Uncertainty analyses for calibrating a soil carbon balance model to agricultural field trial data in Sweden and Kenya," Ecological Modelling, Elsevier, vol. 221(16), pages 1880-1888.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    2. Sathre, Roger & Gustavsson, Leif & Truong, Nguyen Le, 2017. "Climate effects of electricity production fuelled by coal, forest slash and municipal solid waste with and without carbon capture," Energy, Elsevier, vol. 122(C), pages 711-723.
    3. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    4. Repo, Anna & Ahtikoski, Anssi & Liski, Jari, 2015. "Cost of turning forest residue bioenergy to carbon neutral," Forest Policy and Economics, Elsevier, vol. 57(C), pages 12-21.
    5. Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashimoto, Shoji & Morishita, Tomoaki & Sakata, Tadashi & Ishizuka, Shigehiro & Kaneko, Shinji & Takahashi, Masamichi, 2011. "Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site data," Ecological Modelling, Elsevier, vol. 222(7), pages 1283-1292.
    2. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    3. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    4. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    5. Ortiz, Carina & Karltun, Erik & Stendahl, Johan & Gärdenäs, Annemieke I. & Ågren, Göran I., 2011. "Modelling soil carbon development in Swedish coniferous forest soils—An uncertainty analysis of parameters and model estimates using the GLUE method," Ecological Modelling, Elsevier, vol. 222(17), pages 3020-3032.
    6. Jeannette Eggers & Ylva Melin & Johanna Lundström & Dan Bergström & Karin Öhman, 2020. "Management Strategies for Wood Fuel Harvesting—Trade-Offs with Biodiversity and Forest Ecosystem Services," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    7. Tobias Houska & Philipp Kraft & Alejandro Chamorro-Chavez & Lutz Breuer, 2015. "SPOTting Model Parameters Using a Ready-Made Python Package," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    8. Didion, M. & Frey, B. & Rogiers, N. & Thürig, E., 2014. "Validating tree litter decomposition in the Yasso07 carbon model," Ecological Modelling, Elsevier, vol. 291(C), pages 58-68.
    9. Tuomi, M. & Laiho, R. & Repo, A. & Liski, J., 2011. "Wood decomposition model for boreal forests," Ecological Modelling, Elsevier, vol. 222(3), pages 709-718.
    10. Taghizadeh-Toosi, Arezoo & Christensen, Bent T. & Hutchings, Nicholas J. & Vejlin, Jonas & Kätterer, Thomas & Glendining, Margaret & Olesen, Jørgen E., 2014. "C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricultural soils," Ecological Modelling, Elsevier, vol. 292(C), pages 11-25.
    11. Eyvindson, Kyle & Duflot, Rémi & Triviño, María & Blattert, Clemens & Potterf, Mária & Mönkkönen, Mikko, 2021. "High boreal forest multifunctionality requires continuous cover forestry as a dominant management," Land Use Policy, Elsevier, vol. 100(C).
    12. Geoffrey Guest & Francesco Cherubini & Anders Strømman, 2013. "Climate impact potential of utilizing forest residues for bioenergy in Norway," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1089-1108, December.
    13. Repo, Anna & Ahtikoski, Anssi & Liski, Jari, 2015. "Cost of turning forest residue bioenergy to carbon neutral," Forest Policy and Economics, Elsevier, vol. 57(C), pages 12-21.
    14. M. Bolinder & J. Fortin & F. Anctil & O. Andrén & T. Kätterer & R. Jong & L. Parent, 2013. "Spatial and temporal variability of soil biological activity in the Province of Québec, Canada (45–58 °N, 1960–2009)—calculations based on climate records," Climatic Change, Springer, vol. 117(4), pages 739-755, April.
    15. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    16. Fortin, J.G. & Bolinder, M.A. & Anctil, F. & Kätterer, T. & Andrén, O. & Parent, L.E., 2011. "Effects of climatic data low-pass filtering on the ICBM temperature- and moisture-based soil biological activity factors in a cool and humid climate," Ecological Modelling, Elsevier, vol. 222(17), pages 3050-3060.
    17. Yousefpour, Rasoul & You, Bin & Hanewinkel, Marc, 2019. "Simulation of extreme storm effects on regional forest soil carbon stock," Ecological Modelling, Elsevier, vol. 399(C), pages 39-53.
    18. Rämö, Janne & Tupek, Boris & Lehtonen, Heikki & Mäkipää, Raisa, 2023. "Towards climate targets with cropland afforestation – effect of subsidies on profitability," Land Use Policy, Elsevier, vol. 124(C).
    19. Shafiei, Mojtaba & Ghahraman, Bijan & Saghafian, Bahram & Davary, Kamran & Pande, Saket & Vazifedoust, Majid, 2014. "Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region," Agricultural Water Management, Elsevier, vol. 146(C), pages 324-334.
    20. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:221-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.