IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v216y2008i1p75-80.html
   My bibliography  Save this article

Identifying important species: Linking structure and function in ecological networks

Author

Listed:
  • Jordán, Ferenc
  • Okey, Thomas A.
  • Bauer, Barbara
  • Libralato, Simone

Abstract

At least two different approaches have been used to quantitatively assess the importance of species in communities. One approach is to derive relatively simple, structural importance indices from network analysis. This assumes that well-connected species are more important. Another approach is to derive functional importance indices using dynamical simulations. We performed both kinds of analysis, and we ranked the species of the Prince William Sound food web based on 13 structural and 5 functional importance indices. We then compared the rank correlation between structural and functional indices. Our results show that different approaches to quantifying importance give different results; unweighted structural indices never correlate significantly with functional ones, but certain weighted structural indices correlate reasonably well with simulated function. This line of research could help in improving our understanding of the usefulness of structural approaches in quantifying the importance of species and understanding biological communities in general. The results strongly indicate the fundamental importance of indirect effects in governing ecosystem dynamics and the need to account for them in structural approaches. Conversely, it generally verifies the usefulness of functional approaches to the investigation of biological communities that account for indirect effects, whether they are modelling or direct empirical studies.

Suggested Citation

  • Jordán, Ferenc & Okey, Thomas A. & Bauer, Barbara & Libralato, Simone, 2008. "Identifying important species: Linking structure and function in ecological networks," Ecological Modelling, Elsevier, vol. 216(1), pages 75-80.
  • Handle: RePEc:eee:ecomod:v:216:y:2008:i:1:p:75-80
    DOI: 10.1016/j.ecolmodel.2008.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008001981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordán, Ferenc & Benedek, Zsófia & Podani, János, 2007. "Quantifying positional importance in food webs: A comparison of centrality indices," Ecological Modelling, Elsevier, vol. 205(1), pages 270-275.
    2. Whipple, Stuart J. & Borrett, Stuart R. & Patten, Bernard C. & Gattie, David K. & Schramski, John R. & Bata, Seth A., 2007. "Indirect effects and distributed control in ecosystems: Comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 1-17.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    4. Schramski, J.R. & Gattie, D.K. & Patten, B.C. & Borrett, S.R. & Fath, B.D. & Whipple, S.J., 2007. "Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 18-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordán, Ferenc & Liu, Wei-chung & Mike, Ágnes, 2009. "Trophic field overlap: A new approach to quantify keystone species," Ecological Modelling, Elsevier, vol. 220(21), pages 2899-2907.
    2. Yang, Xu-Hua & Wang, Bo & Chen, Sheng-Yong & Wang, Wan-Liang, 2012. "Epidemic dynamics behavior in some bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 917-924.
    3. Endrédi, Anett & Senánszky, Vera & Libralato, Simone & Jordán, Ferenc, 2018. "Food web dynamics in trophic hierarchies," Ecological Modelling, Elsevier, vol. 368(C), pages 94-103.
    4. Almpanidou, Vasiliki & Mazaris, Antonios D. & Mertzanis, Yorgos & Avraam, Ioannis & Antoniou, Ioannis & Pantis, John D. & Sgardelis, Stefanos P., 2014. "Providing insights on habitat connectivity for male brown bears: A combination of habitat suitability and landscape graph-based models," Ecological Modelling, Elsevier, vol. 286(C), pages 37-44.
    5. Losapio, Gianalberto & Jordán, Ferenc & Caccianiga, Marco & Gobbi, Mauro, 2015. "Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland," Ecological Modelling, Elsevier, vol. 314(C), pages 73-79.
    6. Supratim Laha & Soumik Chatterjee & Amlan Das & Barbara Smith & Parthiba Basu, 2022. "Selection of Non-Crop Plant Mixes Informed by Arthropod-Plant Network Analyses for Multiple Ecosystem Services Delivery Towards Ecological Intensification of Agriculture," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    7. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    8. Navia, Andrés F. & Cortés, Enric & Mejía-Falla, Paola A., 2010. "Topological analysis of the ecological importance of elasmobranch fishes: A food web study on the Gulf of Tortugas, Colombia," Ecological Modelling, Elsevier, vol. 221(24), pages 2918-2926.
    9. Móréh, Ágnes & Endrédi, Anett & Piross, Sándor Imre & Jordán, Ferenc, 2021. "Topology of additive pairwise effects in food webs," Ecological Modelling, Elsevier, vol. 440(C).
    10. Zhu, Xueting & Mu, Xianzhong & Hu, Guangwen, 2019. "Ecological network analysis of urban energy metabolic system—A case study of Beijing," Ecological Modelling, Elsevier, vol. 404(C), pages 36-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    2. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    4. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    5. Hines, David E. & Borrett, Stuart R., 2014. "A comparison of network, neighborhood, and node levels of analyses in two models of nitrogen cycling in the Cape Fear River Estuary," Ecological Modelling, Elsevier, vol. 293(C), pages 210-220.
    6. Yang, Zhifeng & Mao, Xufeng, 2011. "Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3785-3794.
    7. Borrett, S.R. & Freeze, M.A., 2011. "Reconnecting environs to their environment," Ecological Modelling, Elsevier, vol. 222(14), pages 2393-2403.
    8. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    9. Jordán, Ferenc & Osváth, Györgyi, 2009. "The sensitivity of food web topology to temporal data aggregation," Ecological Modelling, Elsevier, vol. 220(22), pages 3141-3146.
    10. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    11. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    12. Bata, Seth A. & Borrett, Stuart R. & Patten, Bernard C. & Whipple, Stuart J. & Schramski, John R. & Gattie, David K., 2007. "Equivalence of throughflow- and storage-based environs," Ecological Modelling, Elsevier, vol. 206(3), pages 400-406.
    13. Li, Y. & Yang, Z.F., 2011. "Quantifying the sustainability of water use systems: Calculating the balance between network efficiency and resilience," Ecological Modelling, Elsevier, vol. 222(10), pages 1771-1780.
    14. Stefano Allesina & Mercedes Pascual, 2009. "Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-6, September.
    15. Zhang, Xiaolin & Zhang, Yan & Wang, Yifan & Fath, Brian D., 2021. "Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis," Ecological Modelling, Elsevier, vol. 443(C).
    16. Lu, Jingzhao & Lu, Hongwei & Wang, Weipeng & Feng, SanSan & Lei, Kaiwen, 2021. "Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis," Ecological Modelling, Elsevier, vol. 455(C).
    17. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    18. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
    19. Matamba, L. & Kazanci, C. & Schramski, J.R. & Blessing, M. & Alexander, P. & Patten, B.C., 2009. "Throughflow analysis: A stochastic approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3174-3181.
    20. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:216:y:2008:i:1:p:75-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.