IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v27y2018i1d10.1007_s11749-017-0541-7.html
   My bibliography  Save this article

Spatio-temporal analysis with short- and long-memory dependence: a state-space approach

Author

Listed:
  • Guillermo Ferreira

    (Universidad de Concepción)

  • Jorge Mateu

    (University Jaume I)

  • Emilio Porcu

    (University Federico Santa María)

Abstract

This paper deals with the estimation and prediction problems of spatio-temporal processes by using state-space methodology. The spatio-temporal process is represented through an infinite moving average decomposition. This expansion is well known in time series analysis and can be extended straightforwardly in space–time. Such an approach allows easy implementation of the Kalman filter procedure for estimation and prediction of linear time processes exhibiting both short- and long-range dependence and a spatial dependence structure given on the locations. Furthermore, we consider a truncated state-space equation, which allows to calculate an approximate likelihood for large data sets. The performance of the proposed Kalman filter approach is evaluated by means of several Monte Carlo experiments implemented under different scenarios, and it is illustrated with two applications.

Suggested Citation

  • Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
  • Handle: RePEc:spr:testjl:v:27:y:2018:i:1:d:10.1007_s11749-017-0541-7
    DOI: 10.1007/s11749-017-0541-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-017-0541-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-017-0541-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kokoszka, Piotr S. & Taqqu, Murad S., 1995. "Fractional ARIMA with stable innovations," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 19-47, November.
    2. Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
    3. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    4. Wilfredo Palma & Ricardo Olea & Guillermo Ferreira, 2013. "Estimation and Forecasting of Locally Stationary Processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 86-96, January.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. Huang, Hsin-Cheng & Cressie, Noel, 1996. "Spatio-temporal prediction of snow water equivalent using the Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 22(2), pages 159-175, July.
    7. Moreno Bevilacqua & Carlo Gaetan & Jorge Mateu & Emilio Porcu, 2012. "Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 268-280, March.
    8. Ferreira, Guillermo & Rodríguez, Alejandro & Lagos, Bernardo, 2013. "Kalman filter estimation for a regression model with locally stationary errors," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 52-69.
    9. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    10. Luigi Ippoliti, 2001. "On-line spatio-temporal prediction by a state space representation of the generalized space time autoregressive model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 157-169.
    11. J. P. Hughes & P Guttorp & S. P. Charles, 1999. "A non‐homogeneous hidden Markov model for precipitation occurrence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(1), pages 15-30.
    12. Stroud, Jonathan R. & Stein, Michael L. & Lesht, Barry M. & Schwab, David J. & Beletsky, Dmitry, 2010. "An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 978-990.
    13. Kanti Mardia & Colin Goodall & Edwin Redfern & Francisco Alonso, 1998. "The Kriged Kalman filter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 217-282, December.
    14. Suhasini Subba Rao, 2008. "Statistical analysis of a spatio‐temporal model with location‐dependent parameters and a test for spatial stationarity," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(4), pages 673-694, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    2. Lara Fontanella & Luigi Ippoliti, 2003. "Dynamic models for space-time prediction via Karhunen-Loève expansion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 61-78, February.
    3. Huang, H.-C. & Martinez, F. & Mateu, J. & Montes, F., 2007. "Model comparison and selection for stationary space-time models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4577-4596, May.
    4. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    5. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    6. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    7. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    8. Javier Contreras-Reyes & Wilfredo Palma, 2013. "Statistical analysis of autoregressive fractionally integrated moving average models in R," Computational Statistics, Springer, vol. 28(5), pages 2309-2331, October.
    9. Kim, Yongku & Berliner, L. Mark, 2016. "Change of spatiotemporal scale in dynamic models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 80-92.
    10. Ferreira, Guillermo & Rodríguez, Alejandro & Lagos, Bernardo, 2013. "Kalman filter estimation for a regression model with locally stationary errors," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 52-69.
    11. T. Subba Rao & Gyorgy Terdik, 2017. "A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 936-959, November.
    12. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    13. Matthias Katzfuss, 2017. "A Multi-Resolution Approximation for Massive Spatial Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 201-214, January.
    14. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, October.
    15. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    16. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    17. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    18. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    19. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    20. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:27:y:2018:i:1:d:10.1007_s11749-017-0541-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.