IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v247y2012icp241-250.html
   My bibliography  Save this article

Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems

Author

Listed:
  • Chaianunporn, Thotsapol
  • Hovestadt, Thomas

Abstract

Antagonistic interactions like those between hosts and parasites or parasitoids or between predators and prey are important for many ecological and evolutionary processes. Here, we contrast the effect of commensalism and host-parasitoid interaction (complete fertility loss for infected host), on the concurrent evolution of host dispersal and habitat niche width. We assume that host habitat niche width is associated with a fertility trade-off; the wider the habitat niche, the lower the maximum fertility in optimal habitats. We implement a spatially explicit, individual-based one-host-one-guest metacommunity model (guest species are commensals or parasitoids) with landscape heterogeneity of a continuous habitat trait that affects the host's fertility only. The antagonistic interaction model follows the Nicholson–Bailey equation.

Suggested Citation

  • Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
  • Handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:241-250
    DOI: 10.1016/j.ecolmodel.2012.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001200470X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camille Parmesan & Nils Ryrholm & Constantí Stefanescu & Jane K. Hill & Chris D. Thomas & Henri Descimon & Brian Huntley & Lauri Kaila & Jaakko Kullberg & Toomas Tammaru & W. John Tennent & Jeremy A. , 1999. "Poleward shifts in geographical ranges of butterfly species associated with regional warming," Nature, Nature, vol. 399(6736), pages 579-583, June.
    2. Ulf Dieckmann & Michael Doebeli, 1999. "On the origin of species by sympatric speciation," Nature, Nature, vol. 400(6742), pages 354-357, July.
    3. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    4. Joseph D Chipperfield & Calvin Dytham & Thomas Hovestadt, 2011. "An Updated Algorithm for the Generation of Neutral Landscapes by Spectral Synthesis," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    5. J. T. Lill & R. J. Marquis & R. E. Ricklefs, 2002. "Host plants influence parasitism of forest caterpillars," Nature, Nature, vol. 417(6885), pages 170-173, May.
    6. Filotas, Elise & Grant, Martin & Parrott, Lael & Rikvold, Per Arne, 2010. "The effect of positive interactions on community structure in a multi-species metacommunity model along an environmental gradient," Ecological Modelling, Elsevier, vol. 221(6), pages 885-894.
    7. Gros, Andreas & Hovestadt, Thomas & Poethke, Hans Joachim, 2008. "Evolution of sex-biased dispersal: The role of sex-specific dispersal costs, demographic stochasticity, and inbreeding," Ecological Modelling, Elsevier, vol. 219(1), pages 226-233.
    8. C. D. Thomas & E. J. Bodsworth & R. J. Wilson & A. D. Simmons & Z. G. Davies & M. Musche & L. Conradt, 2001. "Ecological and evolutionary processes at expanding range margins," Nature, Nature, vol. 411(6837), pages 577-581, May.
    9. Nurmi, Tuomas & Parvinen, Kalle, 2008. "On the evolution of specialization with a mechanistic underpinning in structured metapopulations," Theoretical Population Biology, Elsevier, vol. 73(2), pages 222-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2019. "Dispersal evolution in metacommunities of tri-trophic systems," Ecological Modelling, Elsevier, vol. 395(C), pages 28-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.
    2. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    3. Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
    4. Jonathan Newton, 2017. "The preferences of Homo Moralis are unstable under evolving assortativity," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 583-589, May.
    5. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    6. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    7. Blath, Jochen & Paul, Tobias & Tóbiás, András & Wilke Berenguer, Maite, 2024. "The impact of dormancy on evolutionary branching," Theoretical Population Biology, Elsevier, vol. 156(C), pages 66-76.
    8. Boettiger, Carl & Dushoff, Jonathan & Weitz, Joshua S., 2010. "Fluctuation domains in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 77(1), pages 6-13.
    9. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    11. Costa, Carolina L.N. & Marquitti, Flavia M.D. & Perez, S. Ivan & Schneider, David M. & Ramos, Marlon F. & de Aguiar, Marcus A.M., 2018. "Registering the evolutionary history in individual-based models of speciation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 1-14.
    12. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    13. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    14. E. Kisdi & F.J.A. Jacobs & S.A.H. Geritz, 2000. "Red Queen Evolution by Cycles of Evolutionary Branching and Extinction," Working Papers ir00030, International Institute for Applied Systems Analysis.
    15. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    16. Gong, Yubing & Wang, Li & Xu, Bo, 2012. "Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 548-553.
    17. Ziwei Wang & Jiabin Wu, 2023. "Partner Choice and Morality: Preference Evolution under Stable Matching," Papers 2304.11504, arXiv.org, revised Oct 2023.
    18. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    19. György Barabás & Christine Parent & Andrew Kraemer & Frederik Perre & Frederik Laender, 2022. "The evolution of trait variance creates a tension between species diversity and functional diversity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:241-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.