IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v59y2003i4p778-785.html
   My bibliography  Save this article

Demographic Analysis from Summaries of an Age-Structured Population

Author

Listed:
  • William A. Link
  • J. Andrew Royle
  • Jeff S. Hatfield

Abstract

No abstract is available for this item.

Suggested Citation

  • William A. Link & J. Andrew Royle & Jeff S. Hatfield, 2003. "Demographic Analysis from Summaries of an Age-Structured Population," Biometrics, The International Biometric Society, vol. 59(4), pages 778-785, December.
  • Handle: RePEc:bla:biomet:v:59:y:2003:i:4:p:778-785
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2003.00091.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wikle C. K. & Milliff R. F. & Nychka D. & Berliner L.M., 2001. "Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 382-397, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul B. Conn & Duane R. Diefenbach & Jeffrey L. Laake & Mark A. Ternent & Gary C. White, 2008. "Bayesian Analysis of Wildlife Age-at-Harvest Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1170-1177, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    2. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    3. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    4. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    5. Haruko M. Wainwright & Rusen Oktem & Baptiste Dafflon & Sigrid Dengel & John B. Curtis & Margaret S. Torn & Jessica Cherry & Susan S. Hubbard, 2021. "High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data," Land, MDPI, vol. 10(7), pages 1-19, July.
    6. Yuan Yan & Hsin-Cheng Huang & Marc G. Genton, 2021. "Vector Autoregressive Models with Spatially Structured Coefficients for Time Series on a Spatial Grid," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 387-408, September.
    7. Margaret C Johnson & Brian J Reich & Josh M Gray, 2021. "Multisensor fusion of remotely sensed vegetation indices using space‐time dynamic linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 793-812, June.
    8. Joshua S. North & Christopher K. Wikle & Erin M. Schliep, 2022. "A Bayesian Approach for Data-Driven Dynamic Equation Discovery," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 728-747, December.
    9. Kim, Yongku & Berliner, L. Mark, 2016. "Change of spatiotemporal scale in dynamic models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 80-92.
    10. Christopher K. Wikle, 2019. "Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 175-203, June.
    11. Jun Wang & Yang Wang & Hui Zeng, 2016. "A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis," Journal of Geographical Systems, Springer, vol. 18(1), pages 45-66, January.
    12. Giri Gopalan & Birgir Hrafnkelsson & Christopher K. Wikle & Håvard Rue & Guðfinna Aðalgeirsdóttir & Alexander H. Jarosch & Finnur Pálsson, 2019. "A Hierarchical Spatiotemporal Statistical Model Motivated by Glaciology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 669-692, December.
    13. Firoozeh Rivaz & Mohsen Mohammadzadeh & Majid Jafari Khaledi, 2011. "Spatio-temporal modeling and prediction of CO concentrations in Tehran city," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1995-2007, November.
    14. Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.
    15. Bent Natvig & Ingunn Fride Tvete, 2007. "Bayesian Hierarchical Space–time Modeling of Earthquake Data," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 89-114, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:59:y:2003:i:4:p:778-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.