IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6837d10.1038_35079066.html
   My bibliography  Save this article

Ecological and evolutionary processes at expanding range margins

Author

Listed:
  • C. D. Thomas

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

  • E. J. Bodsworth

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

  • R. J. Wilson

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

  • A. D. Simmons

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

  • Z. G. Davies

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

  • M. Musche

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds
    Luther-Universität-Wittenberg, Institüt für Zoologie)

  • L. Conradt

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

Abstract

Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions1,2. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species’ distributions have expanded rapidly in association with recent climate warming3,4,5,6,7,8,9,10. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past11 and future climate change.

Suggested Citation

  • C. D. Thomas & E. J. Bodsworth & R. J. Wilson & A. D. Simmons & Z. G. Davies & M. Musche & L. Conradt, 2001. "Ecological and evolutionary processes at expanding range margins," Nature, Nature, vol. 411(6837), pages 577-581, May.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6837:d:10.1038_35079066
    DOI: 10.1038/35079066
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35079066
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35079066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    2. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    3. Simon Braem & Hans Van Dyck, 2023. "Larval and adult experience and ecotype affect oviposition behavior in a niche-expanding butterfly," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(4), pages 547-561.
    4. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    5. Alessandro Balestrieri & Giuseppe Bogliani & Giovanni Boano & Aritz Ruiz-González & Nicola Saino & Stefano Costa & Pietro Milanesi, 2016. "Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-14, July.
    6. Cormont, Anouk & Wieger Wamelink, G.W. & Jochem, René & WallisDeVries, Michiel F. & Wegman, Ruut M.A., 2013. "Host plant-mediated effects of climate change on the occurrence of the Alcon blue butterfly (Phengaris alcon)," Ecological Modelling, Elsevier, vol. 250(C), pages 329-337.
    7. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    8. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    9. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    10. Cormont, Anouk & Jochem, René & Malinowska, Agnieszka & Verboom, Jana & WallisDeVries, Michiel F. & Opdam, Paul, 2012. "Can phenological shifts compensate for adverse effects of climate change on butterfly metapopulation viability?," Ecological Modelling, Elsevier, vol. 227(C), pages 72-81.
    11. Bennie, Jonathan & Huntley, Brian & Wiltshire, Andrew & Hill, Mark O. & Baxter, Robert, 2008. "Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland," Ecological Modelling, Elsevier, vol. 216(1), pages 47-59.
    12. Buse, Jörn & Griebeler, Eva Maria, 2011. "Incorporating classified dispersal assumptions in predictive distribution models – A case study with grasshoppers and bush-crickets," Ecological Modelling, Elsevier, vol. 222(13), pages 2130-2141.
    13. Mirrahimi, Sepideh & Raoul, Gaël, 2013. "Dynamics of sexual populations structured by a space variable and a phenotypical trait," Theoretical Population Biology, Elsevier, vol. 84(C), pages 87-103.
    14. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2019. "Dispersal evolution in metacommunities of tri-trophic systems," Ecological Modelling, Elsevier, vol. 395(C), pages 28-38.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6837:d:10.1038_35079066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.