IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0028635.html
   My bibliography  Save this article

Estimating Temporal Trend in the Presence of Spatial Complexity: A Bayesian Hierarchical Model for a Wetland Plant Population Undergoing Restoration

Author

Listed:
  • Thomas J Rodhouse
  • Kathryn M Irvine
  • Kerri T Vierling
  • Lee A Vierling

Abstract

Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations (“zones”) with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity—a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

Suggested Citation

  • Thomas J Rodhouse & Kathryn M Irvine & Kerri T Vierling & Lee A Vierling, 2011. "Estimating Temporal Trend in the Presence of Spatial Complexity: A Bayesian Hierarchical Model for a Wetland Plant Population Undergoing Restoration," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-9, December.
  • Handle: RePEc:plo:pone00:0028635
    DOI: 10.1371/journal.pone.0028635
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028635
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0028635&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0028635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Wu & Hongxiao Yang, 2013. "Spatial Patterns and Natural Recruitment of Native Shrubs in a Semi-arid Sandy Land," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    2. Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
    3. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    4. Bakian, Amanda V. & Sullivan, Kimberly A. & Paxton, Eben H., 2012. "Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher," Ecological Modelling, Elsevier, vol. 232(C), pages 119-132.
    5. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    6. Bourgeois, A. & Gaba, S. & Munier-Jolain, N. & Borgy, B. & Monestiez, P. & Soubeyrand, S., 2012. "Inferring weed spatial distribution from multi-type data," Ecological Modelling, Elsevier, vol. 226(C), pages 92-98.
    7. Springborn, Michael & Sanchirico, James N., 2013. "A density projection approach for non-trivial information dynamics: Adaptive management of stochastic natural resources," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 609-624.
    8. Manago, Kimberly F. & Hogue, Terri S. & Porter, Aaron & Hering, Amanda S., 2019. "A Bayesian hierarchical model for multiple imputation of urban spatio-temporal groundwater levels," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 44-51.
    9. Sujit K. Sahu & Alan E. Gelfand & David M. Holland, 2010. "Fusing point and areal level space–time data with application to wet deposition," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 77-103, January.
    10. Peter Guttorp, 2003. "Environmental Statistics—A Personal View," International Statistical Review, International Statistical Institute, vol. 71(2), pages 169-179, August.
    11. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    12. Oliver J Maclaren & Aimée Parker & Carmen Pin & Simon R Carding & Alastair J M Watson & Alexander G Fletcher & Helen M Byrne & Philip K Maini, 2017. "A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    13. Hanna Meyer & Edzer Pebesma, 2022. "Machine learning-based global maps of ecological variables and the challenge of assessing them," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    14. Lionel Roques & Olivier Bonnefon, 2016. "Modelling Population Dynamics in Realistic Landscapes with Linear Elements: A Mechanistic-Statistical Reaction-Diffusion Approach," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    15. Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0028635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.